2025-10-13 03:21:48 -07:00

514 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from copy import deepcopy
from typing import TYPE_CHECKING
import vllm.envs as envs
from vllm.logger import init_logger
from vllm.model_executor.models import ModelRegistry
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, cdiv, round_up
from vllm.v1.kv_cache_interface import FullAttentionSpec, MambaSpec
if TYPE_CHECKING:
from vllm.config import VllmConfig
logger = init_logger(__name__)
class VerifyAndUpdateConfig:
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
raise NotImplementedError
class Gemma3TextModelConfig:
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
hf_config = vllm_config.model_config.hf_config
hf_config.is_causal = not hf_config.use_bidirectional_attention
class GteNewModelConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "NewConfig"
assert config.hidden_act == "gelu"
config.hidden_act = "geglu"
head_dim = config.hidden_size // config.num_attention_heads
config.rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_position_embeddings,
"base": config.rope_theta,
"rope_scaling": getattr(config, "rope_scaling", None),
}
class JambaForSequenceClassificationConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
pooler_config = vllm_config.model_config.pooler_config
if pooler_config.activation is None:
pooler_config.activation = False
class JinaRobertaModelConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
model_config = vllm_config.model_config
config = model_config.hf_config
if config.position_embedding_type == "rotary":
assert config.__class__.__name__ == "XLMRobertaFlashConfig"
head_dim = config.hidden_size // config.num_attention_heads
max_position = config.max_position_embeddings
# Jina-embeddings-v3 has max_position_embeddings=8194, which will cause
# out-of-bound index issue at RoPE for long prompts with torch.compile,
# because it can't be divided by triton num_warps(default=4 or 8).
# To deal with this, we increase max_position to multiple of n_warps,
# so that triton kernel won't hit out-of-bound index in RoPE cache.
if not model_config.enforce_eager:
max_position = round_up(max_position, 8)
config.rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": max_position,
"base": getattr(config, "rope_theta", config.rotary_emb_base),
"rope_scaling": getattr(config, "rope_scaling", None),
}
class NomicBertModelConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "NomicBertConfig"
assert config.activation_function in ["swiglu", "gelu"]
config.position_embedding_type = getattr(
config, "position_embedding_type", "rope"
)
if config.activation_function == "swiglu":
config.hidden_act = "silu"
else:
config.hidden_act = config.activation_function
assert config.mlp_fc1_bias == config.mlp_fc2_bias == config.qkv_proj_bias
config.bias = config.qkv_proj_bias
assert config.rotary_emb_scale_base is None
assert not config.rotary_emb_interleaved
config.layer_norm_eps = config.layer_norm_epsilon
config.intermediate_size = config.n_inner
config.hidden_size = config.n_embd
config.num_hidden_layers = config.n_layer
head_dim = config.hidden_size // config.num_attention_heads
rotary_emb_dim = int(head_dim * config.rotary_emb_fraction)
max_trained_positions = getattr(config, "max_trained_positions", 2048)
config.rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": rotary_emb_dim,
"max_position": max_trained_positions,
"base": getattr(config, "rope_theta", config.rotary_emb_base),
"rope_scaling": getattr(config, "rope_scaling", None),
}
# we ignore config.rotary_scaling_factor so that for datasets shorter
# than max_trained_positions 2048, the results are consistent
# with SentenceTransformer.
# The context extension uses vllm style rope_theta and rope_scaling.
# See #17785 #18755
if (
not vllm_config.model_config.hf_overrides
and vllm_config.model_config.original_max_model_len is None
):
# Default
# Reset max_model_len to max_trained_positions.
# nomic-embed-text-v2-moe the length is set to 512
# by sentence_bert_config.json.
max_model_len_before = vllm_config.model_config.max_model_len
max_model_len = min(
vllm_config.model_config.max_model_len, max_trained_positions
)
vllm_config.recalculate_max_model_len(max_model_len)
logger.warning(
"Nomic context extension is disabled. "
"Changing max_model_len from %s to %s. "
"To enable context extension, see: "
"https://github.com/vllm-project/vllm/tree/main/examples/offline_inference/context_extension.html",
max_model_len_before,
vllm_config.model_config.max_model_len,
)
else:
# We need to re-verify max_model_len to avoid lengths
# greater than position_embedding.
model_config = vllm_config.model_config
hf_text_config = model_config.hf_text_config
if isinstance(model_config.hf_overrides, dict):
# hf_overrides_kw
max_model_len = model_config.hf_overrides.get(
"max_model_len", vllm_config.model_config.max_model_len
)
else:
# hf_overrides_fn
# This might be overridden by sentence_bert_config.json.
max_model_len = vllm_config.model_config.max_model_len
# reset hf_text_config for recalculate_max_model_len.
if hasattr(hf_text_config, "max_model_len"):
delattr(hf_text_config, "max_model_len")
hf_text_config.max_position_embeddings = max_trained_positions
hf_text_config.rope_scaling = config.rotary_kwargs["rope_scaling"]
# The priority of sentence_bert_config.json is higher
# than max_position_embeddings
encoder_config = deepcopy(model_config.encoder_config)
encoder_config.pop("max_seq_length", None)
model_config.encoder_config = encoder_config
vllm_config.recalculate_max_model_len(max_model_len)
class Qwen2ForProcessRewardModelConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
pooler_config = vllm_config.model_config.pooler_config
if pooler_config.step_tag_id is None:
pooler_config.step_tag_id = 151651
class Qwen2ForRewardModelConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
pooler_config = vllm_config.model_config.pooler_config
if pooler_config.softmax is None:
pooler_config.softmax = False
class Qwen3ForSequenceClassificationConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
config = vllm_config.model_config.hf_config
is_original_qwen3_reranker = getattr(
config, "is_original_qwen3_reranker", False
)
if not is_original_qwen3_reranker:
return
tokens = getattr(config, "classifier_from_token", None)
assert tokens is not None and len(tokens) == 2, (
"Try loading the original Qwen3 Reranker?, see: "
"https://github.com/vllm-project/vllm/tree/main/examples/offline_inference/qwen3_reranker.py"
)
vllm_config.model_config.hf_config.method = "from_2_way_softmax"
class JinaVLForSequenceClassificationConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
config = vllm_config.model_config.hf_config
config.num_labels = 1
pooler_config = vllm_config.model_config.pooler_config
if pooler_config.logit_bias is None:
pooler_config.logit_bias = 2.65
class SnowflakeGteNewModelConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "GteConfig"
assert config.hidden_act == "gelu"
config.hidden_act = "geglu"
head_dim = config.hidden_size // config.num_attention_heads
config.rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_position_embeddings,
"base": config.rope_theta,
"rope_scaling": getattr(config, "rope_scaling", None),
}
class GptOssForCausalLMConfig(VerifyAndUpdateConfig):
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
structured_outputs_config = vllm_config.structured_outputs_config
if structured_outputs_config.reasoning_parser == "":
structured_outputs_config.reasoning_parser = "openai_gptoss"
# Increase the max capture size from 512 to 992 for performance.
# NOTE(woosuk): This will increase the number of CUDA graphs
# from 67 to 81.
scheduler_config = vllm_config.scheduler_config
if len(scheduler_config.cuda_graph_sizes) == 1:
max_capture_size = scheduler_config.cuda_graph_sizes[0]
# FIXME(woosuk): When using full cuda graph with FA3, the max
# supported size is 992.
if max_capture_size < 992:
cuda_graph_sizes = [1, 2, 4]
# Step size 8 for small batch sizes
cuda_graph_sizes += [i for i in range(8, 256, 8)]
# Step size 16 for larger batch sizes
cuda_graph_sizes += [i for i in range(256, 993, 16)]
scheduler_config.cuda_graph_sizes = cuda_graph_sizes
logger.info(
"Overriding max cuda graph capture size to %d for performance.", 992
)
class MambaModelConfig(VerifyAndUpdateConfig):
@classmethod
def verify_and_update_config(cls, vllm_config: "VllmConfig") -> None:
"""
Enable FULL_AND_PIECEWISE cuda graph mode by default (required
to get good performance for mamba layers in V1).
Args:
vllm_config: vLLM Config
"""
if not envs.VLLM_USE_V1:
return
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
# Set mamba block size to max_model_len (this may get
# override by prefix caching logic later)
cache_config.mamba_block_size = model_config.max_model_len
# TODO(@tdoublep) find a better way to do this than whitelist
MAMBA2_MODELS = [
"BambaForCausalLM",
"FalconH1ForCausalLM",
"GraniteMoeHybridForCausalLM",
"Mamba2ForCausalLM",
"NemotronHForCausalLM",
"Zamba2ForCausalLM",
]
if cache_config.enable_prefix_caching:
if model_config.architecture in MAMBA2_MODELS:
logger.info(
"Warning: Prefix caching is currently enabled. "
"Its support for Mamba2 layers is experimental. "
"Please report any issues you may observe."
)
else:
logger.info(
"Hybrid or mamba-based model detected without "
"support for prefix caching: disabling."
)
cache_config.enable_prefix_caching = False
# TODO(tdoublep): remove once cascade attention is supported
logger.info(
"Disabling cascade attention since it is not supported for hybrid models."
)
model_config.disable_cascade_attn = True
class HybridAttentionMambaModelConfig(VerifyAndUpdateConfig):
@classmethod
def verify_and_update_config(cls, vllm_config: "VllmConfig") -> None:
"""
Ensure that page size of attention layers is greater than or
equal to the mamba layers. If not, automatically set the attention
block size to ensure that it is. If the attention page size is
strictly greater than the mamba page size, we pad the mamba page size
to make them equal.
Args:
vllm_config: vLLM Config
"""
if not envs.VLLM_USE_V1:
return
# Enable FULL_AND_PIECEWISE by default
MambaModelConfig.verify_and_update_config(vllm_config)
cache_config = vllm_config.cache_config
model_config = vllm_config.model_config
parallel_config = vllm_config.parallel_config
if cache_config.cache_dtype == "auto":
kv_cache_dtype = model_config.dtype
else:
kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_config.cache_dtype]
# get attention page size (for 1 token)
attn_page_size_1_token = FullAttentionSpec(
block_size=1,
num_kv_heads=model_config.get_num_kv_heads(parallel_config),
head_size=model_config.get_head_size(),
dtype=kv_cache_dtype,
).page_size_bytes
model_cls, _ = ModelRegistry.resolve_model_cls(
model_config.architecture,
model_config=model_config,
)
# get mamba page size
mamba_page_size = MambaSpec(
shapes=model_cls.get_mamba_state_shape_from_config(vllm_config),
dtypes=model_cls.get_mamba_state_dtype_from_config(vllm_config),
block_size=model_config.max_model_len,
).page_size_bytes
# Model may be marked as is_hybrid
# but mamba is skipped via config,
# return directly
if mamba_page_size == 0:
return
# Attention backend constraints:
# - FlashAttention (FA) requires block size to be multiple of 16
# - MLA (Multi-head Latent Attention) requires larger alignment:
# * CUTLASS_MLA backend: 128-byte alignment
# * Other MLA backends: 64-byte alignment
if model_config.use_mla:
use_cutlass_mla = envs.VLLM_ATTENTION_BACKEND == "CUTLASS_MLA"
kernel_block_alignment_size = 128 if use_cutlass_mla else 64
else:
kernel_block_alignment_size = 16
if cache_config.enable_prefix_caching:
# With prefix caching, select attention block size to
# optimize for mamba kernel performance
# mamba SSD kernel uses a chunk_size, e.g. 256
# Align the block to the kernel: use lowest multiple of chunk_size
# of attention tokens that would fit mamba_page_size:
# e.g. for mamba page size = 788kB
# attn_1_token = 2kB -> fits ~394 tokens
# then round up to a mulitple of 256 -> 512 tokens
# End result:
# attn_block_size = 512
# mamba_block_size = 512 (aligned to a multiple of chunk_size)
# TODO(tdoublep): this constraint can be relaxed fairly
# easily by changing the way we layout chunks in the
# mamba2 kernels.
from math import gcd
def lcm(a, b):
return a * b // gcd(a, b)
base_chunk_size = model_config.get_mamba_chunk_size()
attn_tokens_per_mamba_state = cdiv(mamba_page_size, attn_page_size_1_token)
chunk_size = lcm(base_chunk_size, kernel_block_alignment_size)
attn_block_size = chunk_size * cdiv(attn_tokens_per_mamba_state, chunk_size)
cache_config.mamba_block_size = attn_block_size
else:
# Without prefix caching, select minimum valid attention block size
# to minimize mamba state padding
# Calculate minimum attention block size that satisfies both:
# 1. Backend alignment requirements (kernel_block_alignment_size)
# 2. Mamba page size compatibility (attn_page_size >= mamba_page_size)
attn_block_size = kernel_block_alignment_size * cdiv(
mamba_page_size, kernel_block_alignment_size * attn_page_size_1_token
)
# override attention block size if either (a) the
# user has not set it or (b) the user has set it
# too small.
if cache_config.block_size is None or cache_config.block_size < attn_block_size:
cache_config.block_size = attn_block_size
logger.info(
"Setting attention block size to %d tokens "
"to ensure that attention page size is >= mamba page size.",
attn_block_size,
)
# compute new attention page size
attn_page_size = cache_config.block_size * attn_page_size_1_token
assert attn_page_size >= mamba_page_size
if attn_page_size == mamba_page_size:
# don't need to pad mamba page size
return
# pad mamba page size to exactly match attention
if (
cache_config.mamba_page_size_padded is None
or cache_config.mamba_page_size_padded != attn_page_size
):
cache_config.mamba_page_size_padded = attn_page_size
mamba_padding_pct = (
100 * (attn_page_size - mamba_page_size) / mamba_page_size
)
logger.info(
"Padding mamba page size by %.2f%% to ensure "
"that mamba page size and attention page size are "
"exactly equal.",
mamba_padding_pct,
)
class DeepseekV32ForCausalLM(VerifyAndUpdateConfig):
@classmethod
def verify_and_update_config(cls, vllm_config: "VllmConfig") -> None:
"""
Updated fp8 cache to custom "fp8_ds_mla" format for DeepSeekV32
"""
hf_config = vllm_config.model_config.hf_config
# Mirror the check in vllm/model_executor/models/deepseek_v2.py
is_v32 = hasattr(hf_config, "index_topk")
assert is_v32
# For DeepSeekV3.2, we use a custom fp8 format as default (i.e.
# "auto")
cache_config = vllm_config.cache_config
if cache_config.cache_dtype == "auto" or cache_config.cache_dtype.startswith(
"fp8"
):
cache_config.cache_dtype = "fp8_ds_mla"
logger.info("Using custom fp8 kv-cache format for DeepSeekV3.2")
if cache_config.cache_dtype == "bfloat16":
cache_config.cache_dtype = "auto"
logger.info("Using bfloat16 kv-cache for DeepSeekV3.2")
MODELS_CONFIG_MAP: dict[str, type[VerifyAndUpdateConfig]] = {
"GteModel": SnowflakeGteNewModelConfig,
"GteNewModel": GteNewModelConfig,
"GteNewForSequenceClassification": GteNewModelConfig,
"Gemma3TextModel": Gemma3TextModelConfig,
"NomicBertModel": NomicBertModelConfig,
"Qwen2ForProcessRewardModel": Qwen2ForProcessRewardModelConfig,
"Qwen2ForRewardModel": Qwen2ForRewardModelConfig,
"Qwen3ForSequenceClassification": Qwen3ForSequenceClassificationConfig,
"XLMRobertaModel": JinaRobertaModelConfig,
"JinaVLForRanking": JinaVLForSequenceClassificationConfig,
"JambaForSequenceClassification": JambaForSequenceClassificationConfig,
"GptOssForCausalLM": GptOssForCausalLMConfig,
"MambaForCausalLM": MambaModelConfig,
"Mamba2ForCausalLM": MambaModelConfig,
"FalconMambaForCausalLM": MambaModelConfig,
"DeepseekV32ForCausalLM": DeepseekV32ForCausalLM,
}