mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 15:45:32 +08:00
391 lines
16 KiB
Python
391 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||
|
||
from collections.abc import Sequence
|
||
|
||
import regex as re
|
||
|
||
from vllm.entrypoints.chat_utils import make_tool_call_id
|
||
from vllm.entrypoints.openai.protocol import (
|
||
ChatCompletionRequest,
|
||
DeltaFunctionCall,
|
||
DeltaMessage,
|
||
DeltaToolCall,
|
||
ExtractedToolCallInformation,
|
||
FunctionCall,
|
||
ToolCall,
|
||
)
|
||
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
|
||
ToolParser,
|
||
)
|
||
from vllm.logger import init_logger
|
||
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
||
|
||
logger = init_logger(__name__)
|
||
|
||
|
||
class DeepSeekV31ToolParser(ToolParser):
|
||
def __init__(self, tokenizer: AnyTokenizer):
|
||
super().__init__(tokenizer)
|
||
|
||
self.current_tool_name_sent: bool = False
|
||
self.prev_tool_call_arr: list[dict] = []
|
||
self.current_tool_id: int = -1
|
||
self.streamed_args_for_tool: list[
|
||
str
|
||
] = [] # map what has been streamed for each tool so far to a list
|
||
|
||
self.tool_calls_start_token: str = "<|tool▁calls▁begin|>"
|
||
self.tool_calls_end_token: str = "<|tool▁calls▁end|>"
|
||
|
||
self.tool_call_start_token: str = "<|tool▁call▁begin|>"
|
||
self.tool_call_end_token: str = "<|tool▁call▁end|>"
|
||
|
||
self.tool_call_regex = re.compile(
|
||
r"<|tool▁call▁begin|>(?P<function_name>.*?)<|tool▁sep|>(?P<function_arguments>.*?)<|tool▁call▁end|>"
|
||
)
|
||
|
||
self.stream_tool_call_portion_regex = re.compile(
|
||
r"(?P<function_name>.*)<|tool▁sep|>(?P<function_arguments>.*)"
|
||
)
|
||
|
||
self.stream_tool_call_name_regex = re.compile(
|
||
r"(?P<function_name>.*)<|tool▁sep|>"
|
||
)
|
||
|
||
if not self.model_tokenizer:
|
||
raise ValueError(
|
||
"The model tokenizer must be passed to the ToolParser "
|
||
"constructor during construction."
|
||
)
|
||
self.tool_calls_start_token_id = self.vocab.get(self.tool_calls_start_token)
|
||
self.tool_calls_end_token_id = self.vocab.get(self.tool_calls_end_token)
|
||
|
||
self.tool_call_start_token_id = self.vocab.get(self.tool_call_start_token)
|
||
self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
|
||
|
||
if (
|
||
self.tool_calls_start_token_id is None
|
||
or self.tool_calls_end_token_id is None
|
||
):
|
||
raise RuntimeError(
|
||
"DeepSeek-V3.1 Tool parser could not locate tool call "
|
||
"start/end tokens in the tokenizer!"
|
||
)
|
||
|
||
def extract_tool_calls(
|
||
self,
|
||
model_output: str,
|
||
request: ChatCompletionRequest,
|
||
) -> ExtractedToolCallInformation:
|
||
# sanity check; avoid unnecessary processing
|
||
if self.tool_calls_start_token not in model_output:
|
||
return ExtractedToolCallInformation(
|
||
tools_called=False, tool_calls=[], content=model_output
|
||
)
|
||
|
||
else:
|
||
try:
|
||
# there are two possible captures - between tags, or between a
|
||
# tag and end-of-string so the result of
|
||
# findall is an array of tuples where one is a function call and
|
||
# the other is None
|
||
function_call_tuples = self.tool_call_regex.findall(model_output)
|
||
|
||
tool_calls = []
|
||
for match in function_call_tuples:
|
||
function_name, function_args = match
|
||
tool_calls.append(
|
||
ToolCall(
|
||
type="function",
|
||
function=FunctionCall(
|
||
name=function_name, arguments=function_args
|
||
),
|
||
)
|
||
)
|
||
|
||
content = model_output[: model_output.find(self.tool_calls_start_token)]
|
||
return ExtractedToolCallInformation(
|
||
tools_called=True,
|
||
tool_calls=tool_calls,
|
||
content=content if content else None,
|
||
)
|
||
|
||
except Exception:
|
||
logger.exception("Error in extracting tool call from response.")
|
||
return ExtractedToolCallInformation(
|
||
tools_called=False, tool_calls=[], content=model_output
|
||
)
|
||
|
||
def extract_tool_calls_streaming(
|
||
self,
|
||
previous_text: str,
|
||
current_text: str,
|
||
delta_text: str,
|
||
previous_token_ids: Sequence[int],
|
||
current_token_ids: Sequence[int],
|
||
delta_token_ids: Sequence[int],
|
||
request: ChatCompletionRequest,
|
||
) -> DeltaMessage | None:
|
||
logger.debug("delta_text: %s", delta_text)
|
||
logger.debug("delta_token_ids: %s", delta_token_ids)
|
||
# check to see if we should be streaming a tool call - is there a
|
||
if self.tool_calls_start_token_id not in current_token_ids:
|
||
logger.debug("No tool call tokens found!")
|
||
return DeltaMessage(content=delta_text)
|
||
delta_text = delta_text.replace(self.tool_calls_start_token, "").replace(
|
||
self.tool_calls_end_token, ""
|
||
)
|
||
try:
|
||
# figure out where we are in the parsing by counting tool call
|
||
# start & end tags
|
||
prev_tool_start_count = previous_token_ids.count(
|
||
self.tool_call_start_token_id
|
||
)
|
||
prev_tool_end_count = previous_token_ids.count(self.tool_call_end_token_id)
|
||
cur_tool_start_count = current_token_ids.count(
|
||
self.tool_call_start_token_id
|
||
)
|
||
cur_tool_end_count = current_token_ids.count(self.tool_call_end_token_id)
|
||
tool_call_portion = None
|
||
text_portion = None
|
||
|
||
# case: if we're generating text, OR rounding out a tool call
|
||
if (
|
||
cur_tool_start_count == cur_tool_end_count
|
||
and prev_tool_end_count == cur_tool_end_count
|
||
and self.tool_call_end_token not in delta_text
|
||
):
|
||
logger.debug("Generating text content! skipping tool parsing.")
|
||
return DeltaMessage(content=delta_text)
|
||
|
||
if self.tool_call_end_token in delta_text:
|
||
logger.debug("tool_call_end_token in delta_text")
|
||
full_text = current_text + delta_text
|
||
tool_call_portion = (
|
||
full_text.split(self.tool_call_start_token)[-1]
|
||
.split(self.tool_call_end_token)[0]
|
||
.rstrip()
|
||
)
|
||
delta_text = delta_text.split(self.tool_call_end_token)[0].rstrip()
|
||
text_portion = delta_text.split(self.tool_call_end_token)[-1].lstrip()
|
||
|
||
# case -- we're starting a new tool call
|
||
if (
|
||
cur_tool_start_count > cur_tool_end_count
|
||
and cur_tool_start_count > prev_tool_start_count
|
||
):
|
||
if len(delta_token_ids) > 1:
|
||
tool_call_portion = current_text.split(self.tool_call_start_token)[
|
||
-1
|
||
]
|
||
else:
|
||
tool_call_portion = None
|
||
delta = None
|
||
|
||
text_portion = None
|
||
|
||
# set cursors and state appropriately
|
||
self.current_tool_id += 1
|
||
self.current_tool_name_sent = False
|
||
self.streamed_args_for_tool.append("")
|
||
logger.debug("Starting on a new tool %s", self.current_tool_id)
|
||
|
||
# case -- we're updating an existing tool call
|
||
elif (
|
||
cur_tool_start_count > cur_tool_end_count
|
||
and cur_tool_start_count == prev_tool_start_count
|
||
):
|
||
# get the portion of the text that's the tool call
|
||
tool_call_portion = current_text.split(self.tool_call_start_token)[-1]
|
||
text_portion = None
|
||
|
||
# case -- the current tool call is being closed.
|
||
elif (
|
||
cur_tool_start_count == cur_tool_end_count
|
||
and cur_tool_end_count >= prev_tool_end_count
|
||
):
|
||
if self.prev_tool_call_arr is None or len(self.prev_tool_call_arr) == 0:
|
||
logger.debug("attempting to close tool call, but no tool call")
|
||
return None
|
||
diff = self.prev_tool_call_arr[self.current_tool_id].get("arguments")
|
||
if diff:
|
||
diff = (
|
||
diff.encode("utf-8").decode("unicode_escape")
|
||
if diff is str
|
||
else diff
|
||
)
|
||
if '"}' not in delta_text:
|
||
return None
|
||
end_loc = delta_text.rindex('"}')
|
||
diff = delta_text[:end_loc] + '"}'
|
||
logger.debug(
|
||
"Finishing tool and found diff that had not "
|
||
"been streamed yet: %s",
|
||
diff,
|
||
)
|
||
self.streamed_args_for_tool[self.current_tool_id] += diff
|
||
return DeltaMessage(
|
||
tool_calls=[
|
||
DeltaToolCall(
|
||
index=self.current_tool_id,
|
||
function=DeltaFunctionCall(arguments=diff).model_dump(
|
||
exclude_none=True
|
||
),
|
||
)
|
||
]
|
||
)
|
||
|
||
# case -- otherwise we're just generating text
|
||
else:
|
||
text = delta_text.replace(self.tool_call_start_token, "")
|
||
text = text.replace(self.tool_call_end_token, "")
|
||
delta = DeltaMessage(tool_calls=[], content=text)
|
||
return delta
|
||
|
||
current_tool_call = dict()
|
||
if tool_call_portion:
|
||
current_tool_call_matches = self.stream_tool_call_portion_regex.match(
|
||
tool_call_portion
|
||
)
|
||
if current_tool_call_matches:
|
||
tool_name, tool_args = current_tool_call_matches.groups()
|
||
current_tool_call["name"] = tool_name
|
||
current_tool_call["arguments"] = tool_args
|
||
else:
|
||
current_tool_call_name_matches = (
|
||
self.stream_tool_call_name_regex.match(tool_call_portion)
|
||
)
|
||
if current_tool_call_name_matches:
|
||
tool_name = current_tool_call_name_matches.groups()
|
||
current_tool_call["name"] = tool_name
|
||
current_tool_call["arguments"] = ""
|
||
else:
|
||
logger.debug("Not enough token")
|
||
return None
|
||
|
||
# case - we haven't sent the tool name yet. If it's available, send
|
||
# it. otherwise, wait until it's available.
|
||
if not self.current_tool_name_sent:
|
||
if current_tool_call is None:
|
||
return None
|
||
function_name: str | None = current_tool_call.get("name")
|
||
if function_name:
|
||
self.current_tool_name_sent = True
|
||
return DeltaMessage(
|
||
tool_calls=[
|
||
DeltaToolCall(
|
||
index=self.current_tool_id,
|
||
type="function",
|
||
id=make_tool_call_id(),
|
||
function=DeltaFunctionCall(
|
||
name=function_name
|
||
).model_dump(exclude_none=True),
|
||
)
|
||
]
|
||
)
|
||
else:
|
||
return None
|
||
|
||
# case -- otherwise, send the tool call delta
|
||
|
||
# if the tool call portion is None, send the delta as text
|
||
if tool_call_portion is None:
|
||
# if there's text but not tool calls, send that -
|
||
# otherwise None to skip chunk
|
||
delta = (
|
||
DeltaMessage(content=delta_text)
|
||
if text_portion is not None
|
||
else None
|
||
)
|
||
return delta
|
||
|
||
# now, the nitty-gritty of tool calls
|
||
# now we have the portion to parse as tool call.
|
||
|
||
logger.debug(
|
||
"Trying to parse current tool call with ID %s", self.current_tool_id
|
||
)
|
||
|
||
# if we're starting a new tool call, push an empty object in as
|
||
# a placeholder for the arguments
|
||
if len(self.prev_tool_call_arr) <= self.current_tool_id:
|
||
self.prev_tool_call_arr.append({})
|
||
|
||
# main logic for tool parsing here - compare prev. partially-parsed
|
||
# JSON to the current partially-parsed JSON
|
||
prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
|
||
"arguments"
|
||
)
|
||
cur_arguments = current_tool_call.get("arguments")
|
||
|
||
logger.debug("diffing old arguments: %s", prev_arguments)
|
||
logger.debug("against new ones: %s", cur_arguments)
|
||
|
||
# case -- no arguments have been created yet. skip sending a delta.
|
||
if not cur_arguments and not prev_arguments:
|
||
logger.debug("Skipping text %s - no arguments", delta_text)
|
||
delta = None
|
||
|
||
# case -- prev arguments are defined, but non are now.
|
||
# probably impossible, but not a fatal error - just keep going
|
||
elif not cur_arguments and prev_arguments:
|
||
logger.error(
|
||
"should be impossible to have arguments reset "
|
||
"mid-call. skipping streaming anything."
|
||
)
|
||
delta = None
|
||
|
||
# case -- we now have the first info about arguments available from
|
||
# autocompleting the JSON
|
||
elif cur_arguments and not prev_arguments:
|
||
delta = DeltaMessage(
|
||
tool_calls=[
|
||
DeltaToolCall(
|
||
index=self.current_tool_id,
|
||
function=DeltaFunctionCall(
|
||
arguments=cur_arguments
|
||
).model_dump(exclude_none=True),
|
||
)
|
||
]
|
||
)
|
||
self.streamed_args_for_tool[self.current_tool_id] = cur_arguments
|
||
|
||
# last case -- we have an update to existing arguments.
|
||
elif cur_arguments and prev_arguments:
|
||
if (
|
||
isinstance(delta_text, str)
|
||
and cur_arguments != prev_arguments
|
||
and len(cur_arguments) > len(prev_arguments)
|
||
and cur_arguments.startswith(prev_arguments)
|
||
):
|
||
delta_arguments = cur_arguments[len(prev_arguments) :]
|
||
logger.debug("got diff %s", delta_text)
|
||
|
||
delta = DeltaMessage(
|
||
tool_calls=[
|
||
DeltaToolCall(
|
||
index=self.current_tool_id,
|
||
function=DeltaFunctionCall(
|
||
arguments=delta_arguments
|
||
).model_dump(exclude_none=True),
|
||
)
|
||
]
|
||
)
|
||
self.streamed_args_for_tool[self.current_tool_id] = cur_arguments
|
||
else:
|
||
delta = None
|
||
|
||
# handle saving the state for the current tool into
|
||
# the "prev" list for use in diffing for the next iteration
|
||
if self.current_tool_id == len(self.prev_tool_call_arr) - 1:
|
||
self.prev_tool_call_arr[self.current_tool_id] = current_tool_call
|
||
else:
|
||
self.prev_tool_call_arr.append(current_tool_call)
|
||
|
||
return delta
|
||
|
||
except Exception:
|
||
logger.exception("Error trying to handle streaming tool call.")
|
||
return None # do not stream a delta. skip this token ID.
|