vllm/examples/online_serving/openai_responses_client_with_tools.py
Chauncey 59a50afa08
[Frontend] OpenAI Responses API supports Tool/Function calling - non-harmony (#26874)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-11-06 10:40:03 +00:00

84 lines
2.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Set up this example by starting a vLLM OpenAI-compatible server with tool call
options enabled.
Reasoning models can be used through the Responses API as seen here
https://platform.openai.com/docs/api-reference/responses
For example:
vllm serve Qwen/Qwen3-1.7B --reasoning-parser qwen3 \
--structured-outputs-config.backend xgrammar \
--enable-auto-tool-choice --tool-call-parser hermes
"""
import json
from openai import OpenAI
from utils import get_first_model
def get_weather(latitude: float, longitude: float) -> str:
"""
Mock function to simulate getting weather data.
In a real application, this would call an external weather API.
"""
return f"Current temperature at ({latitude}, {longitude}) is 20°C."
tools = [
{
"type": "function",
"name": "get_weather",
"description": "Get current temperature for provided coordinates in celsius.",
"parameters": {
"type": "object",
"properties": {
"latitude": {"type": "number"},
"longitude": {"type": "number"},
},
"required": ["latitude", "longitude"],
"additionalProperties": False,
},
"strict": True,
}
]
input_messages = [
{"role": "user", "content": "What's the weather like in Paris today?"}
]
def main():
base_url = "http://0.0.0.0:8000/v1"
client = OpenAI(base_url=base_url, api_key="empty")
model = get_first_model(client)
response = client.responses.create(
model=model, input=input_messages, tools=tools, tool_choice="required"
)
for out in response.output:
if out.type == "function_call":
print("Function call:", out.name, out.arguments)
tool_call = out
args = json.loads(tool_call.arguments)
result = get_weather(args["latitude"], args["longitude"])
input_messages.append(tool_call) # append model's function call message
input_messages.append(
{ # append result message
"type": "function_call_output",
"call_id": tool_call.call_id,
"output": str(result),
}
)
response_2 = client.responses.create(
model=model,
input=input_messages,
tools=tools,
)
print(response_2.output_text)
if __name__ == "__main__":
main()