vllm/tests/kernels/moe/test_nvfp4_moe.py
Fardin Hoque b8c48c5d72
kernels/moe test pruning (#27053)
Signed-off-by: Fardin Hoque <kfhfar@amazon.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-30 12:10:34 +08:00

141 lines
4.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from tests.kernels.moe.utils import make_test_weights
from tests.kernels.quantization.nvfp4_utils import (
FLOAT4_E2M1_MAX,
FLOAT8_E4M3_MAX,
dequantize_nvfp4_to_dtype,
)
from tests.kernels.utils import torch_moe
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.config import nvfp4_moe_quant_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
from vllm.platforms import current_platform
if not current_platform.has_device_capability(100):
pytest.skip(
"Nvfp4 Requires compute capability of 10 or above.", allow_module_level=True
)
MNK_FACTORS = [
(2, 1024, 1024),
(2, 1024, 1536),
(2, 3072, 1024),
(64, 1024, 1024),
(64, 3072, 1024),
(64, 2048, 1536),
(224, 1024, 1024),
(224, 1024, 1536),
]
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
@pytest.mark.parametrize("e", [40, 64, 256])
@pytest.mark.parametrize("topk", [1, 6, 8])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@torch.inference_mode()
def test_cutlass_fp4_moe_no_graph(
m: int, n: int, k: int, e: int, topk: int, dtype: torch.dtype
):
current_platform.seed_everything(7)
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
):
quant_blocksize = 16
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
(_, w1_q, w1_blockscale, w1_gs), (_, w2_q, w2_blockscale, w2_gs) = (
make_test_weights(
e,
n,
k,
in_dtype=dtype,
quant_dtype="nvfp4",
block_shape=None, # use quant_blocksize?
per_out_ch_quant=False,
)
)
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)
a1_gs = torch.ones((e,), device="cuda", dtype=torch.float32)
a2_gs = torch.ones((e,), device="cuda", dtype=torch.float32)
assert w1_gs is not None
assert w2_gs is not None
assert w1_blockscale is not None
assert w2_blockscale is not None
quant_config = nvfp4_moe_quant_config(
g1_alphas=(1 / w1_gs),
g2_alphas=(1 / w2_gs),
a1_gscale=a1_gs,
a2_gscale=a2_gs,
w1_scale=w1_blockscale,
w2_scale=w2_blockscale,
)
cutlass_output = cutlass_moe_fp4(
a=a,
w1_fp4=w1_q,
w2_fp4=w2_q,
topk_weights=topk_weights,
topk_ids=topk_ids,
quant_config=quant_config,
m=m,
n=n,
k=k,
e=e,
)
# Reference check:
a_global_scale = (
(FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(a.flatten(), dim=-1)
).to(torch.float32)
a_fp4, a_scale_interleaved = ops.scaled_fp4_quant(a, a_global_scale)
a_in_dtype = dequantize_nvfp4_to_dtype(
a_fp4,
a_scale_interleaved,
a_global_scale,
dtype=a.dtype,
device=a.device,
block_size=quant_blocksize,
)
w1_d = torch.empty((e, 2 * n, k), device="cuda", dtype=dtype)
w2_d = torch.empty((e, k, n), device="cuda", dtype=dtype)
for idx in range(0, e):
w1_d[idx] = dequantize_nvfp4_to_dtype(
w1_q[idx],
w1_blockscale[idx],
w1_gs[idx],
dtype=dtype,
device=w1_q.device,
block_size=quant_blocksize,
)
w2_d[idx] = dequantize_nvfp4_to_dtype(
w2_q[idx],
w2_blockscale[idx],
w2_gs[idx],
dtype=dtype,
device=w2_q.device,
block_size=quant_blocksize,
)
torch_output = torch_moe(a_in_dtype, w1_d, w2_d, score, topk)
torch.testing.assert_close(torch_output, cutlass_output, atol=1e-1, rtol=1e-1)
if __name__ == "__main__":
test_cutlass_fp4_moe_no_graph((2, 1024, 1024), 40, 1, torch.half)