vllm/vllm/compilation/fix_functionalization.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

183 lines
7.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import operator
from typing import Dict, Iterable, List, Optional, Tuple, Union
import torch
from torch._higher_order_ops.auto_functionalize import auto_functionalized
from vllm.logger import init_logger
from .fx_utils import is_func
from .vllm_inductor_pass import VllmInductorPass
logger = init_logger(__name__)
class FixFunctionalizationPass(VllmInductorPass):
"""
This pass defunctionalizes certain nodes to avoid redundant tensor copies.
After this pass, DCE (dead-code elimination) should never be run,
as de-functionalized nodes may appear as dead code.
To add new nodes to defunctionalize, add to the if-elif chain in __call__.
"""
def __call__(self, graph: torch.fx.Graph):
self.begin()
self.dump_graph(graph, "before_fix_functionalization")
self.nodes_to_remove: List[torch.fx.Node] = []
count = 0
for node in graph.nodes:
if not is_func(node, auto_functionalized):
continue # Avoid deep if-elif nesting
kwargs = node.kwargs
at_target = node.args[0]
if at_target == torch.ops._C.rotary_embedding.default:
query = kwargs['query']
mm_node = query.args[0].args[0]
# rotary_embedding is a special case: the two mutating inputs
# are query and key, which are slices of mm_node.
# While functionalized, results at[1] and at[2] are scattered
# back into mm_node. After de-functionalization, we can just
# use mm_node directly.
for idx, user in self.getitem_users(node).items():
for user_of_getitem in user.users:
if is_func(user_of_getitem,
torch.ops.aten.slice_scatter.default):
user_of_getitem.replace_all_uses_with(mm_node)
self._remove(user_of_getitem)
self._remove(user)
self.insert_defunctionalized(graph, node)
self._remove(node)
# rms_norm replacements avoid the most copies for LLaMa.
elif at_target == torch.ops._C.fused_add_rms_norm.default:
mutated_args = {1: 'input', 2: 'residual'}
self.defunctionalize(graph, node, mutated_args)
elif at_target == torch.ops._C.fused_add_rms_norm_static_fp8_quant.default: # noqa: E501
mutated_args = {1: 'result', 2: 'residual'}
self.defunctionalize(graph, node, mutated_args)
elif at_target == torch.ops._C.rms_norm_dynamic_per_token_quant.default: # noqa: E501
mutated_args = {1: 'result', 2: 'scale', 3: 'residual'}
self.defunctionalize(graph, node, mutated_args)
elif at_target in [
torch.ops._C.rms_norm.default,
torch.ops._C.rms_norm_static_fp8_quant.default
]:
mutated_args = {1: 'result'}
self.defunctionalize(graph, node, mutated_args)
elif at_target == torch.ops._C.silu_and_mul.default:
mutated_args = {1: 'out'}
# Because we have an 'out', need to specify args directly
self.defunctionalize(graph,
node,
mutated_args,
args=('out', 'input'))
else:
continue # skip the count
count += 1
self.dump_graph(graph, "before_fix_functionalization_cleanup")
# Remove the nodes all at once
count_removed = len(self.nodes_to_remove)
for node in self.nodes_to_remove:
graph.erase_node(node)
logger.debug("De-functionalized %s nodes, removed %s nodes", count,
count_removed)
self.dump_graph(graph, "after_fix_functionalization")
self.end_and_log()
def _remove(self, node_or_nodes: Union[torch.fx.Node,
Iterable[torch.fx.Node]]):
"""
Stage a node (or nodes) for removal at the end of the pass.
"""
if isinstance(node_or_nodes, torch.fx.Node):
self.nodes_to_remove.append(node_or_nodes)
else:
self.nodes_to_remove.extend(node_or_nodes)
def defunctionalize(self,
graph: torch.fx.Graph,
node: torch.fx.Node,
mutated_args: Dict[int, Union[torch.fx.Node, str]],
args: Optional[Tuple[Union[torch.fx.Node, str],
...]] = None):
"""
De-functionalize a node by replacing it with a call to the original.
It also replaces the getitem users with the mutated arguments.
See replace_users_with_mutated_args and insert_defunctionalized.
"""
self.replace_users_with_mutated_args(node, mutated_args)
self.insert_defunctionalized(graph, node, args=args)
self._remove(node)
def replace_users_with_mutated_args(self, node: torch.fx.Node,
mutated_args: Dict[int,
Union[torch.fx.Node,
str]]):
"""
Replace all getitem users of the auto-functionalized node with the
mutated arguments.
:param node: The auto-functionalized node
:param mutated_args: The mutated arguments, indexed by getitem index.
If the value of an arg is a string, `node.kwargs[arg]` is used.
"""
for idx, user in self.getitem_users(node).items():
arg = mutated_args[idx]
arg = node.kwargs[arg] if isinstance(arg, str) else arg
user.replace_all_uses_with(arg)
self._remove(user)
def getitem_users(self, node: torch.fx.Node) -> Dict[int, torch.fx.Node]:
"""
Returns the operator.getitem users of the auto-functionalized node,
indexed by the index they are getting.
"""
users = {}
for user in node.users:
if is_func(user, operator.getitem):
idx = user.args[1]
users[idx] = user
return users
def insert_defunctionalized(self,
graph: torch.fx.Graph,
node: torch.fx.Node,
args: Optional[Tuple[Union[torch.fx.Node, str],
...]] = None):
"""
Insert a new defunctionalized node into the graph before node.
If one of the kwargs is 'out', provide args directly,
as node.kwargs cannot be used.
See https://github.com/pytorch/pytorch/blob/a00faf440888ffb724bad413f329a49e2b6388e7/torch/_inductor/lowering.py#L351
:param graph: Graph to insert the defunctionalized node into
:param node: The auto-functionalized node to defunctionalize
:param args: If we cannot use kwargs, specify args directly.
If an arg is a string, `node.kwargs[arg]` is used.
""" # noqa: E501
assert is_func(node, auto_functionalized), \
f"node must be auto-functionalized, is {node} instead"
# Create a new call to the original function
with graph.inserting_before(node):
function = node.args[0]
if args is None:
graph.call_function(function, kwargs=node.kwargs)
else:
# Args passed as strings refer to items in node.kwargs
args = tuple(node.kwargs[arg] if isinstance(arg, str) else arg
for arg in args)
graph.call_function(function, args=args)