vllm/vllm/utils/jsontree.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

166 lines
3.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Helper functions to work with nested JSON structures."""
from collections.abc import Callable, Iterable
from functools import reduce
from typing import TYPE_CHECKING, TypeAlias, TypeVar, cast, overload
if TYPE_CHECKING:
import torch
from vllm.multimodal.inputs import BatchedTensorInputs
_T = TypeVar("_T")
_U = TypeVar("_U")
JSONTree: TypeAlias = (
dict[str, "JSONTree[_T]"] | list["JSONTree[_T]"] | tuple["JSONTree[_T]", ...] | _T
)
"""A nested JSON structure where the leaves need not be JSON-serializable."""
_JSONTree: TypeAlias = (
dict[str, "JSONTree[_T]"]
| list["JSONTree[_T]"]
| tuple["JSONTree[_T]", ...]
| dict[str, _T]
| list[_T]
| tuple[_T, ...]
| _T
)
"""
Same as `JSONTree` but with additional `Union` members to satisfy overloads.
"""
def json_iter_leaves(value: JSONTree[_T]) -> Iterable[_T]:
"""Iterate through each leaf in a nested JSON structure."""
if isinstance(value, dict):
for v in value.values():
yield from json_iter_leaves(v)
elif isinstance(value, (list, tuple)):
for v in value:
yield from json_iter_leaves(v)
else:
yield value
@overload
def json_map_leaves(
func: Callable[["torch.Tensor"], "torch.Tensor"],
value: "BatchedTensorInputs",
) -> "BatchedTensorInputs": ...
@overload
def json_map_leaves(
func: Callable[[_T], _U],
value: _T | dict[str, _T],
) -> _U | dict[str, _U]: ...
@overload
def json_map_leaves(
func: Callable[[_T], _U],
value: _T | list[_T],
) -> _U | list[_U]: ...
@overload
def json_map_leaves(
func: Callable[[_T], _U],
value: _T | tuple[_T, ...],
) -> _U | tuple[_U, ...]: ...
@overload
def json_map_leaves(
func: Callable[[_T], _U],
value: JSONTree[_T],
) -> JSONTree[_U]: ...
def json_map_leaves(
func: Callable[[_T], _U],
value: "BatchedTensorInputs" | _JSONTree[_T],
) -> "BatchedTensorInputs" | _JSONTree[_U]:
"""Apply a function to each leaf in a nested JSON structure."""
if isinstance(value, dict):
return {
k: json_map_leaves(func, v) # type: ignore[arg-type]
for k, v in value.items()
}
elif isinstance(value, list):
return [json_map_leaves(func, v) for v in value]
elif isinstance(value, tuple):
return tuple(json_map_leaves(func, v) for v in value)
else:
return func(value)
@overload
def json_reduce_leaves(
func: Callable[[_T, _T], _T],
value: _T | dict[str, _T],
/,
) -> _T: ...
@overload
def json_reduce_leaves(
func: Callable[[_T, _T], _T],
value: _T | list[_T],
/,
) -> _T: ...
@overload
def json_reduce_leaves(
func: Callable[[_T, _T], _T],
value: _T | tuple[_T, ...],
/,
) -> _T: ...
@overload
def json_reduce_leaves(
func: Callable[[_T, _T], _T],
value: JSONTree[_T],
/,
) -> _T: ...
@overload
def json_reduce_leaves(
func: Callable[[_U, _T], _U],
value: JSONTree[_T],
initial: _U,
/,
) -> _U: ...
def json_reduce_leaves(
func: Callable[..., _T | _U],
value: _JSONTree[_T],
initial: _U = cast(_U, ...), # noqa: B008
/,
) -> _T | _U:
"""
Apply a function of two arguments cumulatively to each leaf in a
nested JSON structure, from left to right, so as to reduce the
sequence to a single value.
"""
if initial is ...:
return reduce(func, json_iter_leaves(value)) # type: ignore[arg-type]
return reduce(
func, # type: ignore[arg-type]
json_iter_leaves(value),
initial,
)
def json_count_leaves(value: JSONTree[_T]) -> int:
"""Count the number of leaves in a nested JSON structure."""
return sum(1 for _ in json_iter_leaves(value))