vllm/tests/quantization/test_register_quantization_config.py
Hank_ 4d5943bda6
[quantization][config] enable override existing quant_config (#28510)
Signed-off-by: Hank <hcc.mayday@gmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-11-14 01:24:10 +00:00

147 lines
4.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests register custom quantization config.
See https://github.com/vllm-project/vllm/issues/11926 for more details.
Run `pytest tests/quantization/test_register_quantization_config.py`.
"""
import logging
from typing import Any
import pytest
import torch
import torch.nn.functional as F
from vllm.model_executor.layers.linear import (
LinearBase, # noqa: E501
UnquantizedLinearMethod,
)
from vllm.model_executor.layers.quantization import (
QuantizationMethods,
get_quantization_config,
register_quantization_config,
)
from vllm.model_executor.layers.quantization.base_config import ( # noqa: E501
QuantizationConfig,
)
class FakeQuantLinearMethod(UnquantizedLinearMethod):
"""Fake quantization linear method for per-token dynamic quantization."""
def __init__(self, num_bits: int = 8) -> None:
"""Initialize the quantization method."""
super().__init__()
self.num_bits = num_bits
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
"""Perform fake quantization before the linear layer."""
# Calculate the scales dynamically
max_val = torch.amax(x, dim=(0, -1), keepdims=True)
min_val = torch.amin(x, dim=(0, -1), keepdims=True)
scales = (max_val - min_val) / (2**self.num_bits - 1)
# Fake quantize the input
quant_x = torch.clamp(
torch.round(x / scales),
-(2 ** (self.num_bits - 1)),
2 ** (self.num_bits - 1) - 1,
)
dequant_x = quant_x * scales
return F.linear(dequant_x, layer.weight, bias)
@register_quantization_config("custom_quant")
class CustomQuantConfig(QuantizationConfig):
"""Custom quantization config for per-token dynamic fake quantization."""
def __init__(self, num_bits: int = 8) -> None:
"""Initialize the quantization config."""
super().__init__()
self.num_bits = num_bits
def get_name(self) -> QuantizationMethods:
"""Name of the quantization method."""
return "custom_quant"
def get_supported_act_dtypes(self) -> list[torch.dtype]:
"""List of supported activation dtypes."""
return [torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
"""Minimum GPU capability to support the quantization method."""
return -1
@staticmethod
def get_config_filenames() -> list[str]:
"""List of filenames to search for in the model directory."""
return []
@classmethod
def from_config(cls, config: dict[str, Any]) -> "CustomQuantConfig":
"""Create a config class from the model's quantization config."""
return CustomQuantConfig(num_bits=config.get("num_bits", 8))
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> FakeQuantLinearMethod | None:
"""Get the quantize method to use for the quantized layer."""
if isinstance(layer, LinearBase):
return FakeQuantLinearMethod(num_bits=self.num_bits)
return None
def test_register_quantization_config(caplog_vllm):
"""Test register custom quantization config."""
# The quantization method `custom_quant` should be registered.
assert get_quantization_config("custom_quant") == CustomQuantConfig
# The quantization method `custom_quant` is already exists,
# should raise a warning when re-registering it.
with caplog_vllm.at_level(logging.WARNING):
register_quantization_config("custom_quant")(CustomQuantConfig)
assert any(
"The quantization method 'custom_quant' already exists" in message
for message in caplog_vllm.messages
), "Expected a warning when re-registering custom_quant"
@pytest.mark.parametrize(
argnames="model",
argvalues=[
"meta-llama/Llama-3.2-1B-Instruct",
],
)
def test_custom_quant(vllm_runner, model, monkeypatch):
"""Test infer with the custom quantization method."""
# `LLM.apply_model` requires pickling a function.
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
with vllm_runner(
model_name=model, quantization="custom_quant", enforce_eager=True
) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
# Check the quantization method is FakeQuantLinearMethod
assert isinstance(qkv_proj.quant_method, FakeQuantLinearMethod)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output