Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

156 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only FlexOlmo model compatible with HuggingFace weights."""
import torch
from torch import nn
from vllm.config import VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.models.olmoe import OlmoeAttention, OlmoeForCausalLM
from vllm.transformers_utils.configs import FlexOlmoConfig
logger = init_logger(__name__)
class FlexOlmoAttention(OlmoeAttention):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
hf_config = vllm_config.model_config.hf_config
assert isinstance(hf_config, FlexOlmoConfig)
self.k_norm = RMSNorm(
self.total_num_kv_heads * self.head_dim, eps=hf_config.rms_norm_eps
)
self.q_norm = RMSNorm(
self.total_num_heads * self.head_dim, eps=hf_config.rms_norm_eps
)
class FlexOlmoMoE(nn.Module):
"""A tensor-parallel MoE implementation for FlexOlmo that shards each expert
across all ranks.
Each expert's weights are sharded across all ranks and a fused MoE
kernel is used for the forward pass, and finally we reduce the outputs
across ranks.
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
hf_config = vllm_config.model_config.hf_config
assert isinstance(hf_config, FlexOlmoConfig)
tp_size = get_tensor_model_parallel_world_size()
# Gate always runs at half / full precision for now.
self.gate = ReplicatedLinear(
hf_config.hidden_size,
hf_config.num_experts,
bias=False,
return_bias=False,
quant_config=None,
prefix=f"{prefix}.gate",
)
# Gate always runs at half / full precision for now.
self.experts = FusedMoE(
num_experts=hf_config.num_experts,
top_k=hf_config.num_experts_per_tok,
hidden_size=hf_config.hidden_size,
intermediate_size=hf_config.intermediate_size,
reduce_results=True,
renormalize=False,
quant_config=None,
tp_size=tp_size,
prefix=f"{prefix}.experts",
)
self.top_k = hf_config.num_experts_per_tok
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# NOTE: hidden_states can have either 1D or 2D shape.
orig_shape = hidden_states.shape
hidden_dim = hidden_states.shape[-1]
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (num_tokens, n_experts)
router_logits = self.gate(hidden_states)
# Warning: The experts mutate the hidden state input! This messes up
# basic things like the residual stream.
final_hidden_states = self.experts(
hidden_states=hidden_states.detach().clone(),
router_logits=router_logits.float(),
)
return final_hidden_states.view(orig_shape)
class FlexOlmoDecoderLayer(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
hf_config = vllm_config.model_config.hf_config
assert isinstance(hf_config, FlexOlmoConfig)
self.self_attn = FlexOlmoAttention(
vllm_config=vllm_config, prefix=f"{prefix}.self_attn"
)
self.post_attention_layernorm = RMSNorm(
hf_config.hidden_size, eps=hf_config.rms_norm_eps
)
self.post_feedforward_layernorm = RMSNorm(
hf_config.hidden_size, eps=hf_config.rms_norm_eps
)
self.mlp = FlexOlmoMoE(vllm_config=vllm_config, prefix=f"{prefix}.mlp")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor | None]:
# Attention block.
residual = hidden_states
hidden_states = self.self_attn(positions, hidden_states)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = hidden_states + residual
# MLP block.
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, None
class FlexOlmoForCausalLM(OlmoeForCausalLM):
fall_back_to_pt_during_load = False
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[nn.Module] = FlexOlmoDecoderLayer,
):
super().__init__(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type)