mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 01:15:44 +08:00
156 lines
5.5 KiB
Python
156 lines
5.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only FlexOlmo model compatible with HuggingFace weights."""
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import ReplicatedLinear
|
|
from vllm.model_executor.models.olmoe import OlmoeAttention, OlmoeForCausalLM
|
|
from vllm.transformers_utils.configs import FlexOlmoConfig
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class FlexOlmoAttention(OlmoeAttention):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
hf_config = vllm_config.model_config.hf_config
|
|
assert isinstance(hf_config, FlexOlmoConfig)
|
|
|
|
self.k_norm = RMSNorm(
|
|
self.total_num_kv_heads * self.head_dim, eps=hf_config.rms_norm_eps
|
|
)
|
|
self.q_norm = RMSNorm(
|
|
self.total_num_heads * self.head_dim, eps=hf_config.rms_norm_eps
|
|
)
|
|
|
|
|
|
class FlexOlmoMoE(nn.Module):
|
|
"""A tensor-parallel MoE implementation for FlexOlmo that shards each expert
|
|
across all ranks.
|
|
|
|
Each expert's weights are sharded across all ranks and a fused MoE
|
|
kernel is used for the forward pass, and finally we reduce the outputs
|
|
across ranks.
|
|
"""
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
hf_config = vllm_config.model_config.hf_config
|
|
assert isinstance(hf_config, FlexOlmoConfig)
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
# Gate always runs at half / full precision for now.
|
|
self.gate = ReplicatedLinear(
|
|
hf_config.hidden_size,
|
|
hf_config.num_experts,
|
|
bias=False,
|
|
return_bias=False,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
|
|
# Gate always runs at half / full precision for now.
|
|
self.experts = FusedMoE(
|
|
num_experts=hf_config.num_experts,
|
|
top_k=hf_config.num_experts_per_tok,
|
|
hidden_size=hf_config.hidden_size,
|
|
intermediate_size=hf_config.intermediate_size,
|
|
reduce_results=True,
|
|
renormalize=False,
|
|
quant_config=None,
|
|
tp_size=tp_size,
|
|
prefix=f"{prefix}.experts",
|
|
)
|
|
|
|
self.top_k = hf_config.num_experts_per_tok
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
# NOTE: hidden_states can have either 1D or 2D shape.
|
|
orig_shape = hidden_states.shape
|
|
hidden_dim = hidden_states.shape[-1]
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits = self.gate(hidden_states)
|
|
# Warning: The experts mutate the hidden state input! This messes up
|
|
# basic things like the residual stream.
|
|
final_hidden_states = self.experts(
|
|
hidden_states=hidden_states.detach().clone(),
|
|
router_logits=router_logits.float(),
|
|
)
|
|
|
|
return final_hidden_states.view(orig_shape)
|
|
|
|
|
|
class FlexOlmoDecoderLayer(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
hf_config = vllm_config.model_config.hf_config
|
|
assert isinstance(hf_config, FlexOlmoConfig)
|
|
|
|
self.self_attn = FlexOlmoAttention(
|
|
vllm_config=vllm_config, prefix=f"{prefix}.self_attn"
|
|
)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
hf_config.hidden_size, eps=hf_config.rms_norm_eps
|
|
)
|
|
self.post_feedforward_layernorm = RMSNorm(
|
|
hf_config.hidden_size, eps=hf_config.rms_norm_eps
|
|
)
|
|
|
|
self.mlp = FlexOlmoMoE(vllm_config=vllm_config, prefix=f"{prefix}.mlp")
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
|
# Attention block.
|
|
residual = hidden_states
|
|
hidden_states = self.self_attn(positions, hidden_states)
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = hidden_states + residual
|
|
|
|
# MLP block.
|
|
residual = hidden_states
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
return hidden_states, None
|
|
|
|
|
|
class FlexOlmoForCausalLM(OlmoeForCausalLM):
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[nn.Module] = FlexOlmoDecoderLayer,
|
|
):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type)
|