Harry Mellor a8b70304d6
Update rope_scaling to rope_parameters in preparation for Transformers v5 (#28542)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-19 09:06:36 -08:00

235 lines
8.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2024 The ModelBest team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only MiniCPM3 model compatible with HuggingFace weights."""
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.models.minicpm import (
MiniCPMDecoderLayer,
MiniCPMForCausalLM,
MiniCPMModel,
)
from .utils import make_layers
class MiniCPM3Attention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: int,
kv_lora_rank: int,
max_position_embeddings: int = 8192,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
tp_size = get_tensor_model_parallel_world_size()
assert self.num_heads % tp_size == 0
self.num_local_heads = num_heads // tp_size
self.scaling = self.qk_head_dim**-0.5
self.max_position_embeddings = max_position_embeddings
self.q_a_proj = ReplicatedLinear(
self.hidden_size, self.q_lora_rank, bias=False, quant_config=quant_config
)
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(
q_lora_rank,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_b_proj",
)
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa",
)
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj",
)
# O projection.
self.o_proj = RowParallelLinear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
self.qk_rope_head_dim,
rotary_dim=self.qk_rope_head_dim,
max_position=max_position_embeddings,
rope_parameters=config.rope_parameters,
)
self.attn = Attention(
self.num_local_heads,
self.qk_head_dim,
self.scaling,
num_kv_heads=self.num_local_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
q, _ = self.q_a_proj(hidden_states)
q = self.q_a_layernorm(q)
q, _ = self.q_b_proj(q)
q = q.view(-1, self.num_local_heads, self.qk_head_dim)
_, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
latent_cache, _ = self.kv_a_proj_with_mqa(hidden_states)
kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
latent_cache = latent_cache.unsqueeze(1)
kv_a = self.kv_a_layernorm(kv_a.contiguous())
kv, _ = self.kv_b_proj(kv_a)
kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = latent_cache[:, :, self.kv_lora_rank :]
q_pe, k_pe = self.rotary_emb(
positions,
q_pe.reshape(-1, self.num_local_heads * self.qk_rope_head_dim),
k_pe.reshape(-1, self.qk_rope_head_dim),
)
q_pe = q_pe.view(-1, self.num_local_heads, self.qk_rope_head_dim)
k_pe = k_pe.view(-1, 1, self.qk_rope_head_dim)
q[..., self.qk_nope_head_dim :] = q_pe
k = torch.empty_like(q)
k[..., : self.qk_nope_head_dim] = k_nope
k[..., self.qk_nope_head_dim :] = k_pe
q = q.reshape(-1, self.num_local_heads * self.qk_head_dim)
k = k.view(-1, self.num_local_heads * self.qk_head_dim)
v = torch.nn.functional.pad(
v, [0, self.qk_head_dim - self.v_head_dim], value=0
).view(-1, self.num_local_heads * self.qk_head_dim)
attn_output = self.attn(q, k, v)
attn_output = attn_output.view(-1, self.num_local_heads, self.qk_head_dim)[
..., : self.v_head_dim
].reshape(-1, self.num_local_heads * self.v_head_dim)
output, _ = self.o_proj(attn_output)
return output
class MiniCPM3DecoderLayer(MiniCPMDecoderLayer):
def _init_attn_block(self):
self.input_layernorm = RMSNorm(
self.config.hidden_size, eps=self.config.rms_norm_eps
)
self.self_attn = MiniCPM3Attention(
config=self.config,
hidden_size=self.hidden_size,
num_heads=self.config.num_attention_heads,
qk_nope_head_dim=self.config.qk_nope_head_dim,
qk_rope_head_dim=self.config.qk_rope_head_dim,
v_head_dim=self.config.v_head_dim,
q_lora_rank=self.config.q_lora_rank,
kv_lora_rank=self.config.kv_lora_rank,
max_position_embeddings=self.max_position_embeddings,
cache_config=self.cache_config,
quant_config=self.quant_config,
prefix=f"{self.prefix}.self_attn",
)
class MiniCPM3Model(MiniCPMModel):
def _init_layers(
self,
prefix: str,
config: PretrainedConfig,
cache_config: CacheConfig | None,
quant_config: QuantizationConfig | None,
):
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: MiniCPM3DecoderLayer(
config, cache_config, quant_config, prefix=prefix
),
prefix=f"{prefix}.layers",
)
class MiniCPM3ForCausalLM(MiniCPMForCausalLM):
packed_modules_mapping = {
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def _init_model(self, *, vllm_config: VllmConfig, prefix: str = ""):
return MiniCPM3Model(vllm_config=vllm_config, prefix=prefix)