vllm/vllm/v1/attention/backends/cpu_attn.py
Hyogeun Oh (오효근) 4e4d017b6f
[Docs] Fix warnings in mkdocs build (continued) (#23743)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
2025-08-27 17:17:29 +00:00

923 lines
34 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
from torch.nn.functional import scaled_dot_product_attention
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionLayer,
AttentionMetadata, AttentionType,
is_quantized_kv_cache)
from vllm.attention.backends.utils import CommonAttentionState
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.v1.attention.backends.utils import (AttentionMetadataBuilder,
CommonAttentionMetadata)
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.kv_cache_interface import AttentionSpec
from vllm.v1.worker.gpu_input_batch import InputBatch
try:
import intel_extension_for_pytorch.llm.modules as ipex_modules
_use_ipex = True
# AttributeError is to handle a bug in ipex
# https://github.com/intel/intel-extension-for-pytorch/pull/813
except (ImportError, AttributeError):
_use_ipex = False
from vllm import _custom_ops as ops
logger = init_logger(__name__)
class TorchSDPABackend(AttentionBackend):
accept_output_buffer: bool = False
@classmethod
def get_supported_dtypes(cls) -> list[torch.dtype]:
return [torch.float16, torch.bfloat16, torch.float32]
@classmethod
def validate_head_size(cls, head_size: int) -> None:
attn_impl = _get_paged_attn_impl()
is_valid, supported_head_sizes = attn_impl.validate_head_size(
head_size)
if not is_valid:
attn_type = cls.__name__.removesuffix("Backend")
raise ValueError(
f"Head size {head_size} is not supported by {attn_type}. "
f"Supported head sizes are: {supported_head_sizes}. "
"Set VLLM_ATTENTION_BACKEND=FLEX_ATTENTION to use "
"FlexAttention backend which supports all head sizes.")
@staticmethod
def get_name() -> str:
return "TORCH_SDPA_VLLM_V1"
@staticmethod
def get_impl_cls() -> type["TorchSDPABackendImpl"]:
return TorchSDPABackendImpl
@staticmethod
def get_metadata_cls() -> type["AttentionMetadata"]:
return TorchSDPAMetadata
@staticmethod
def get_state_cls() -> type["CommonAttentionState"]:
return CommonAttentionState
@staticmethod
def get_builder_cls() -> type["TorchSDPAMetadataBuilderV1"]:
return TorchSDPAMetadataBuilderV1
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> tuple[int, ...]:
return _get_paged_attn_impl().get_kv_cache_shape(
num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def use_cascade_attention(*args, **kwargs) -> bool:
return False
@dataclass
class TorchSDPAMetadata(AttentionMetadata):
"""Metadata for PagedAttention."""
# (batch_size,). The length of sequences (entire tokens seen so far) per
# sequence.
seq_lens_tensor: Optional[torch.Tensor]
# Maximum sequence length in the batch. 0 if it is prefill-only batch.
max_decode_seq_len: int
# (batch_size, max_blocks_per_seq).
# Block addresses per sequence. (Seq id -> list of physical block)
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
# in the kv cache. Each block can contain up to block_size tokens.
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
# captured.
block_tables: Optional[torch.Tensor]
"""Metadata for TorchSDPABackend.
"""
# Currently, input sequences can only contain all prompts
# or all decoding. True if all sequences are prompts.
chunked_prefill: bool
seq_lens: Optional[list[int]] = None # For non-chunked prefill
# For chunked prefill only
max_query_len: Optional[int] = None
max_kv_len: Optional[int] = None
prefill_query_start_loc: Optional[torch.Tensor] = None
kv_start_loc: Optional[torch.Tensor] = None
prefill_block_tables: Optional[torch.Tensor] = None
# For V1 logits index only
query_start_loc: Optional[torch.Tensor] = None
# Begin encoder attn & enc/dec cross-attn fields...
# Encoder sequence lengths representation
encoder_seq_lens: Optional[list[int]] = None
encoder_seq_lens_tensor: Optional[torch.Tensor] = None
# Maximum sequence length among encoder sequences
max_encoder_seq_len: Optional[int] = None
# Number of tokens input to encoder
num_encoder_tokens: Optional[int] = None
# Cross-attention memory-mapping data structures: slot mapping
# and block tables
cross_slot_mapping: Optional[torch.Tensor] = None
cross_block_tables: Optional[torch.Tensor] = None
def __post_init__(self):
# Set during the execution of the first attention op.
# It is a list because it is needed to set per prompt
# when alibi slopes is used. It is because of the limitation
# from xformer API.
# will not appear in the __repr__ and __init__
self.attn_bias: Optional[list[torch.Tensor]] = None
self.encoder_attn_bias: Optional[list[torch.Tensor]] = None
self.cross_attn_bias: Optional[list[torch.Tensor]] = None
@property
def is_all_encoder_attn_metadata_set(self):
'''
All attention metadata required for encoder attention is set.
'''
return ((self.encoder_seq_lens is not None)
and (self.encoder_seq_lens_tensor is not None)
and (self.max_encoder_seq_len is not None))
@property
def is_all_cross_attn_metadata_set(self):
'''
All attention metadata required for enc/dec cross-attention is set.
Superset of encoder attention required metadata.
'''
return (self.is_all_encoder_attn_metadata_set
and (self.cross_slot_mapping is not None)
and (self.cross_block_tables is not None))
@property
def prefill_metadata(self) -> Optional["TorchSDPAMetadata"]:
if self.num_prefill_tokens == 0:
return None
return self
@property
def decode_metadata(self) -> Optional["TorchSDPAMetadata"]:
if self.num_decode_tokens == 0:
return None
return self
def get_seq_lens(
self,
attn_type: str,
):
'''
Extract appropriate sequence lengths from attention metadata
according to attention type.
Arguments:
* attn_metadata: Attention metadata structure associated with attention
* attn_type: encoder attention, decoder self-attention,
encoder/decoder cross-attention
Returns:
* Appropriate sequence lengths tensor for query
* Appropriate sequence lengths tensor for key & value
'''
if (attn_type == AttentionType.DECODER
or attn_type == AttentionType.ENCODER_ONLY):
seq_lens_q = self.seq_lens
seq_lens_kv = self.seq_lens
elif attn_type == AttentionType.ENCODER:
seq_lens_q = self.encoder_seq_lens
seq_lens_kv = self.encoder_seq_lens
elif attn_type == AttentionType.ENCODER_DECODER:
seq_lens_q = self.seq_lens
seq_lens_kv = self.encoder_seq_lens
else:
raise AttributeError(f"Invalid attention type {str(attn_type)}")
return seq_lens_q, seq_lens_kv
def get_attn_bias(
self,
attn_type: str,
) -> Optional[list[torch.Tensor]]:
'''
Extract appropriate attention bias from attention metadata
according to attention type.
Arguments:
* attn_metadata: Attention metadata structure associated with attention
* attn_type: encoder attention, decoder self-attention,
encoder/decoder cross-attention
Returns:
* Appropriate attention bias value given the attention type
'''
if (attn_type == AttentionType.DECODER
or attn_type == AttentionType.ENCODER_ONLY):
return self.attn_bias
elif attn_type == AttentionType.ENCODER:
return self.encoder_attn_bias
elif attn_type == AttentionType.ENCODER_DECODER:
return self.cross_attn_bias
else:
raise AttributeError(f"Invalid attention type {str(attn_type)}")
def set_attn_bias(
self,
attn_bias: list[torch.Tensor],
attn_type: str,
) -> None:
'''
Update appropriate attention bias field of attention metadata,
according to attention type.
Arguments:
* attn_metadata: Attention metadata structure associated with attention
* attn_bias: The desired attention bias value
* attn_type: encoder attention, decoder self-attention,
encoder/decoder cross-attention
'''
if (attn_type == AttentionType.DECODER
or attn_type == AttentionType.ENCODER_ONLY):
self.attn_bias = attn_bias
elif attn_type == AttentionType.ENCODER:
self.encoder_attn_bias = attn_bias
elif attn_type == AttentionType.ENCODER_DECODER:
self.cross_attn_bias = attn_bias
else:
raise AttributeError(f"Invalid attention type {str(attn_type)}")
def get_seq_len_block_table_args(
self,
attn_type: str,
) -> tuple:
'''
The particular choice of sequence-length- and block-table-related
attributes which should be extracted from attn_metadata is dependent
on the type of attention operation.
Decoder attn -> select entirely decoder self-attention-related fields
Encoder/decoder cross-attn -> select encoder sequence lengths &
cross-attn block-tables fields
Encoder attn -> select encoder sequence lengths fields & no block tables
Arguments:
* attn_metadata: Attention metadata structure associated with attention
* is_prompt: True if prefill, False otherwise
* attn_type: encoder attention, decoder self-attention,
encoder/decoder cross-attention
Returns:
* Appropriate sequence-lengths tensor
* Appropriate max sequence-length scalar
* Appropriate block tables (or None)
'''
if (attn_type == AttentionType.DECODER
or attn_type == AttentionType.ENCODER_ONLY):
# Decoder self-attention
# Choose max_seq_len based on whether we are in prompt_run
return (self.seq_lens_tensor, self.max_decode_seq_len,
self.block_tables)
elif attn_type == AttentionType.ENCODER_DECODER:
# Enc/dec cross-attention KVs match encoder sequence length;
# cross-attention utilizes special "cross" block tables
return (self.encoder_seq_lens_tensor, self.max_encoder_seq_len,
self.cross_block_tables)
elif attn_type == AttentionType.ENCODER:
# No block tables associated with encoder attention
return (self.encoder_seq_lens_tensor, self.max_encoder_seq_len,
None)
else:
raise AttributeError(f"Invalid attention type {str(attn_type)}")
class TorchSDPAMetadataBuilderV1(AttentionMetadataBuilder[TorchSDPAMetadata]):
def __init__(self, kv_cache_spec: AttentionSpec, layer_names: list[str],
vllm_config: VllmConfig, device: torch.device) -> None:
self.kv_cache_spec = kv_cache_spec
self.vllm_config = vllm_config
self.scheduler_config = vllm_config.scheduler_config
# For reorder
self.reorder_prompt_req_index_list = np.empty(
vllm_config.scheduler_config.max_num_seqs, dtype=np.int64)
self.reorder_decode_req_index_list = np.empty(
vllm_config.scheduler_config.max_num_seqs, dtype=np.int64)
self.num_prompt_req: int = 0
self.seq_start_loc_cpu = torch.zeros(
vllm_config.scheduler_config.max_num_seqs + 1,
dtype=torch.int32,
device="cpu",
)
self.seq_start_loc_np = self.seq_start_loc_cpu.numpy()
def reorder_batch(self, input_batch: InputBatch,
scheduler_output: SchedulerOutput) -> bool:
prompt_list_idx = 0
decode_list_idx = 0
for req_index in range(input_batch.num_reqs):
if input_batch.num_computed_tokens_cpu[
req_index] < input_batch.num_prompt_tokens[req_index]:
# prompt stage
self.reorder_prompt_req_index_list[prompt_list_idx] = req_index
prompt_list_idx += 1
else:
# decode stage
self.reorder_decode_req_index_list[decode_list_idx] = req_index
decode_list_idx += 1
assert decode_list_idx + prompt_list_idx == input_batch.num_reqs
# Update prompt requests number
self.num_prompt_req = prompt_list_idx
reorder_req_num = 0
for req_index in range(decode_list_idx):
if self.reorder_decode_req_index_list[req_index] < prompt_list_idx:
reorder_req_num += 1
else:
break
if reorder_req_num == 0:
return False
reorder_prompt_list = (
self.reorder_prompt_req_index_list[:prompt_list_idx]
[-reorder_req_num:])
reorder_decode_list = (
self.reorder_decode_req_index_list[:decode_list_idx]
[:reorder_req_num])
assert reorder_decode_list.size == reorder_prompt_list.size
for idx in range(reorder_req_num):
prompt_req_index = reorder_prompt_list[idx].item()
decode_req_index = reorder_decode_list[idx].item()
input_batch.swap_states(prompt_req_index, decode_req_index)
return True
def build(self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False) -> TorchSDPAMetadata:
num_reqs = common_attn_metadata.num_reqs
max_query_len = common_attn_metadata.max_query_len
seq_lens_cpu = common_attn_metadata.seq_lens_cpu
seq_lens_np = seq_lens_cpu.numpy()
num_prompt_req = self.num_prompt_req
max_prefill_seq_len = seq_lens_np[:num_prompt_req].max().item(
) if num_prompt_req > 0 else 0
max_decode_seq_len = seq_lens_np[num_prompt_req:num_reqs].max().item(
) if num_prompt_req < num_reqs else 0
self.seq_start_loc_np[0] = 0
np.cumsum(seq_lens_np, out=self.seq_start_loc_np[1:num_reqs + 1])
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
num_prefill_tokens = int(query_start_loc_cpu[num_prompt_req].item())
num_decode_tokens = int(query_start_loc_cpu[num_reqs].item() -
num_prefill_tokens)
slot_mapping = common_attn_metadata.slot_mapping.long()
block_table_tensor = common_attn_metadata.block_table_tensor
attn_metadata = TorchSDPAMetadata(
num_prefills=num_prompt_req,
num_prefill_tokens=num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
slot_mapping=slot_mapping,
# to ensure inference when chunked_prefill is disabled
seq_lens=seq_lens_cpu.tolist(),
seq_lens_tensor=seq_lens_cpu[num_prompt_req:num_reqs], # decode
max_decode_seq_len=max_decode_seq_len, # decode
block_tables=block_table_tensor[num_prompt_req:num_reqs], # decode
chunked_prefill=self.scheduler_config.chunked_prefill_enabled,
max_query_len=max_query_len,
max_kv_len=max_prefill_seq_len,
prefill_query_start_loc=query_start_loc_cpu[:num_prompt_req +
1], # prefill
kv_start_loc=self.seq_start_loc_cpu[:num_prompt_req +
1], # prefill
prefill_block_tables=block_table_tensor[:
num_prompt_req], # prefill
query_start_loc=query_start_loc_cpu[:num_reqs +
1], # for logits index
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=False,
)
return attn_metadata
class TorchSDPABackendImpl(AttentionImpl[TorchSDPAMetadata]):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
) -> None:
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0.")
if logits_soft_cap is not None:
logger.warning_once("Torch SPDA does not support logits soft cap. "
"Outputs may be slightly off.")
self.paged_attn_impl = _get_paged_attn_impl()
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
self.sliding_window = sliding_window
self.kv_cache_dtype = kv_cache_dtype
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.need_mask = (self.alibi_slopes is not None
or self.sliding_window is not None)
if is_quantized_kv_cache(kv_cache_dtype) and not _use_ipex:
raise NotImplementedError(
"Torch SDPA backend FP8 KV cache requires "
"intel_extension_for_pytorch support.")
self.attn_type = attn_type
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: TorchSDPAMetadata, # type: ignore
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
output_block_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with torch SDPA and PagedAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache: shape =
[2, num_blocks, block_size * num_kv_heads * head_size]
NOTE: kv_cache will be an empty tensor with shape [0]
for profiling run.
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
if output_scale is not None or output_block_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for TorchSDPABackendImpl")
# For warming-up
if attn_metadata is None:
return query
attn_type = self.attn_type
if (attn_type == AttentionType.ENCODER
and (not attn_metadata.is_all_encoder_attn_metadata_set)):
raise AttributeError("Encoder attention requires setting "
"encoder metadata attributes.")
elif (attn_type == AttentionType.ENCODER_DECODER
and (not attn_metadata.is_all_cross_attn_metadata_set)):
raise AttributeError("Encoder/decoder cross-attention "
"requires setting cross-attention "
"metadata attributes.")
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
if key is not None:
assert value is not None
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
else:
assert value is None
if (attn_type != AttentionType.ENCODER and kv_cache.numel() > 0):
# KV-cache during decoder-self- or
# encoder-decoder-cross-attention, but not
# during encoder attention.
#
# Even if there are no new key/value pairs to cache,
# we still need to break out key_cache and value_cache
# i.e. for later use by paged attention
key_cache, value_cache = self.paged_attn_impl.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)
if (key is not None) and (value is not None):
if attn_type == AttentionType.ENCODER_DECODER:
# Update cross-attention KV cache (prefill-only)
# During cross-attention decode, key & value will be None,
# preventing this IF-statement branch from running
updated_slot_mapping = attn_metadata.cross_slot_mapping
else:
# Update self-attention KV cache (prefill/decode)
updated_slot_mapping = attn_metadata.slot_mapping
self.paged_attn_impl.write_to_paged_cache(
key, value, key_cache, value_cache, updated_slot_mapping,
self.kv_cache_dtype, layer._k_scale, layer._v_scale)
if attn_type != AttentionType.ENCODER:
# Decoder self-attention supports chunked prefill.
# Encoder/decoder cross-attention requires no chunked
# prefill (100% prefill or 100% decode tokens, no mix)
num_prefill_tokens = attn_metadata.num_prefill_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
else:
# Encoder attention - chunked prefill is not applicable;
# derive token-count from query shape & and treat them
# as 100% prefill tokens
assert attn_metadata.num_encoder_tokens is not None
num_prefill_tokens = attn_metadata.num_encoder_tokens
num_decode_tokens = 0
if attn_type == AttentionType.DECODER:
# Only enforce this shape-constraint for decoder
# self-attention
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
output = torch.empty_like(query)
if prefill_meta := attn_metadata.prefill_metadata:
if not prefill_meta.prefill_metadata.chunked_prefill: # type: ignore
assert attn_metadata.seq_lens is not None
self._run_sdpa_forward(output,
query,
key,
value,
prefill_meta,
attn_type=attn_type)
else:
# prefix-enabled attention
assert not self.need_mask
import intel_extension_for_pytorch.llm.modules as ipex_modules
output = torch.empty_like(query)
ipex_modules.PagedAttention.flash_attn_varlen_func(
output[:prefill_meta.num_prefill_tokens, :, :],
query[:prefill_meta.num_prefill_tokens, :, :],
key_cache,
value_cache,
prefill_meta.prefill_query_start_loc,
prefill_meta.kv_start_loc,
prefill_meta.max_query_len,
prefill_meta.max_kv_len,
self.scale,
True,
prefill_meta.prefill_block_tables,
self.alibi_slopes,
)
if decode_meta := attn_metadata.decode_metadata:
assert attn_type != AttentionType.ENCODER_ONLY, (
"Encoder-only models should not have decode metadata.")
# Decoding run.
(
seq_lens_arg,
max_seq_len_arg,
block_tables_arg,
) = decode_meta.get_seq_len_block_table_args(attn_type)
self.paged_attn_impl.forward_decode(
output[attn_metadata.num_prefill_tokens:, :, :],
query[attn_metadata.num_prefill_tokens:, :, :],
key_cache,
value_cache,
block_tables_arg,
seq_lens_arg,
max_seq_len_arg,
self.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
layer._k_scale,
layer._v_scale,
)
# Reshape the output tensor.
return output.view(-1, self.num_heads * self.head_size)
def _run_sdpa_forward(
self,
output: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_metadata: TorchSDPAMetadata,
attn_type: str = AttentionType.DECODER,
) -> None:
if self.num_kv_heads != self.num_heads:
key = key.repeat_interleave(self.num_queries_per_kv, dim=1)
value = value.repeat_interleave(self.num_queries_per_kv, dim=1)
attn_masks = attn_metadata.get_attn_bias(attn_type)
if attn_masks is None:
if self.alibi_slopes is not None:
attn_masks = _make_alibi_bias(
self.alibi_slopes, query.dtype,
attn_metadata.seq_lens) # type: ignore
elif self.sliding_window is not None:
assert attn_metadata.seq_lens is not None
attn_masks = _make_sliding_window_bias(
attn_metadata.seq_lens, self.sliding_window,
query.dtype) # type: ignore
else:
seq_lens, _ = attn_metadata.get_seq_lens(attn_type)
attn_masks = [None] * len(seq_lens)
attn_metadata.set_attn_bias(attn_masks, attn_type)
query = query.movedim(0, query.dim() - 2)
key = key.movedim(0, key.dim() - 2)
value = value.movedim(0, value.dim() - 2)
causal_attn = (attn_type == AttentionType.DECODER)
seq_lens_q, seq_lens_kv = attn_metadata.get_seq_lens(attn_type)
start_q, start_kv = 0, 0
for seq_len_q, seq_len_kv, mask in zip(seq_lens_q, seq_lens_kv,
attn_masks):
end_q = start_q + seq_len_q
end_kv = start_kv + seq_len_kv
sub_out = scaled_dot_product_attention(
query[None, :, start_q:end_q, :],
key[None, :, start_kv:end_kv, :],
value[None, :, start_kv:end_kv, :],
attn_mask=mask,
dropout_p=0.0,
is_causal=causal_attn and mask is None,
scale=self.scale).squeeze(0).movedim(query.dim() - 2, 0)
output[start_q:end_q, :, :] = sub_out
start_q, start_kv = end_q, end_kv
def _make_alibi_bias(
alibi_slopes: torch.Tensor,
dtype: torch.dtype,
seq_lens: list[int],
) -> list[torch.Tensor]:
attn_biases: list[torch.Tensor] = []
for seq_len in seq_lens:
bias = torch.arange(seq_len, dtype=dtype)
# NOTE(zhuohan): HF uses
# `bias = bias[None, :].repeat(seq_len, 1)`
# here. We find that both biases give the same results, but
# the bias below more accurately follows the original ALiBi
# paper.
bias = bias[None, :] - bias[:, None]
num_heads = alibi_slopes.shape[0]
bias = bias[None, :].repeat((num_heads, 1, 1))
bias.mul_(alibi_slopes[:, None, None]).unsqueeze_(0)
inf_mask = torch.empty(
(1, seq_len, seq_len),
dtype=bias.dtype).fill_(-torch.inf).triu_(diagonal=1)
attn_biases.append((bias + inf_mask).to(dtype))
return attn_biases
def _make_sliding_window_bias(
seq_lens: list[int],
window_size: Optional[int],
dtype: torch.dtype,
) -> list[torch.Tensor]:
attn_biases: list[torch.Tensor] = []
for seq_len in seq_lens:
tensor = torch.full(
(1, seq_len, seq_len),
dtype=dtype,
fill_value=1,
)
shift = 0
mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore
if window_size is not None:
mask = torch.triu(mask, diagonal=shift - window_size + 1)
mask = torch.log(mask)
attn_biases.append(mask.to(dtype))
return attn_biases
class _PagedAttention:
@staticmethod
def validate_head_size(head_size: int) -> tuple[bool, list[int]]:
SUPPORT_HS = [32, 64, 80, 96, 112, 128, 192, 256]
return head_size in SUPPORT_HS, SUPPORT_HS
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
*args,
) -> tuple[int, ...]:
return 2, num_blocks, block_size * num_kv_heads * head_size
@staticmethod
def split_kv_cache(
kv_cache: torch.Tensor,
num_kv_heads: int,
head_size: int,
*args,
) -> tuple[torch.Tensor, torch.Tensor]:
x = 16 // kv_cache.element_size()
num_blocks = kv_cache.shape[1]
key_cache = kv_cache[0]
key_cache = key_cache.view(num_blocks, num_kv_heads, head_size // x,
-1, x)
value_cache = kv_cache[1]
value_cache = value_cache.view(num_blocks, num_kv_heads, head_size, -1)
return key_cache, value_cache
@staticmethod
def write_to_paged_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: torch.Tensor,
v_scale: torch.Tensor,
*args,
) -> None:
ops.reshape_and_cache(
key,
value,
key_cache,
value_cache,
slot_mapping.flatten(),
kv_cache_dtype,
k_scale,
v_scale,
)
@staticmethod
def forward_decode(
output: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
max_context_len: int,
kv_cache_dtype: str,
num_kv_heads: int,
scale: float,
alibi_slopes: Optional[torch.Tensor],
k_scale: torch.Tensor,
v_scale: torch.Tensor,
*args,
) -> None:
tp_rank: int = 0
blocksparse_local_blocks: int = 0
blocksparse_vert_stride: int = 0
blocksparse_block_size: int = 64
blocksparse_head_sliding_step: int = 0
block_size = value_cache.shape[3]
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
tp_rank,
blocksparse_local_blocks,
blocksparse_vert_stride,
blocksparse_block_size,
blocksparse_head_sliding_step,
)
@staticmethod
def copy_blocks(
kv_caches: list[torch.Tensor],
src_to_dists: torch.Tensor,
*args,
) -> None:
key_caches = [kv_cache[0] for kv_cache in kv_caches]
value_caches = [kv_cache[1] for kv_cache in kv_caches]
ops.copy_blocks(key_caches, value_caches, src_to_dists)
class _IPEXPagedAttention(_PagedAttention):
@staticmethod
def validate_head_size(head_size: int) -> tuple[bool, list[int]]:
return True, []
@staticmethod
def split_kv_cache(
kv_cache: torch.Tensor,
num_kv_heads: int,
head_size: int,
*args,
) -> tuple[torch.Tensor, torch.Tensor]:
num_blocks = kv_cache.shape[1]
key_cache = kv_cache[0]
key_cache = key_cache.view(num_blocks, num_kv_heads, -1, head_size)
value_cache = kv_cache[1]
value_cache = value_cache.view(num_blocks, num_kv_heads, -1, head_size)
return key_cache, value_cache
@staticmethod
def write_to_paged_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: torch.Tensor,
v_scale: torch.Tensor,
*args,
) -> None:
ipex_modules.PagedAttention.reshape_and_cache(
key, value, key_cache, value_cache,
slot_mapping.flatten().int())
@staticmethod
def forward_decode(
output: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
max_context_len: int,
kv_cache_dtype: str,
num_kv_heads: int,
scale: float,
alibi_slopes: Optional[torch.Tensor],
k_scale: torch.Tensor,
v_scale: torch.Tensor,
*args,
) -> None:
block_size = value_cache.shape[2]
head_mapping = torch.arange(
0,
num_kv_heads,
device="cpu",
dtype=torch.int32,
).view(num_kv_heads,
1).repeat_interleave(query.size(1) // num_kv_heads).flatten()
ipex_modules.PagedAttention.single_query_cached_kv_attention(
output, query.contiguous(), key_cache, value_cache, head_mapping,
scale, block_tables, context_lens, block_size, max_context_len,
alibi_slopes)
def _get_paged_attn_impl():
if _use_ipex:
return _IPEXPagedAttention
else:
return _PagedAttention