Yeshwanth N 71b1c8b667
[Chore]:Extract math and argparse utilities to separate modules (#27188)
Signed-off-by: Yeshwanth Surya <yeshsurya@gmail.com>
Signed-off-by: Yeshwanth N <yeshsurya@gmail.com>
Signed-off-by: yeshsurya <yeshsurya@gmail.com>
2025-10-26 04:03:32 -07:00

48 lines
1.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils.argparse_utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="BAAI/bge-reranker-v2-m3",
runner="pooling",
enforce_eager=True,
)
return parser.parse_args()
def main(args: Namespace):
# Sample prompts.
text_1 = "What is the capital of France?"
texts_2 = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.",
]
# Create an LLM.
# You should pass runner="pooling" for cross-encoder models
llm = LLM(**vars(args))
# Generate scores. The output is a list of ScoringRequestOutputs.
outputs = llm.score(text_1, texts_2)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for text_2, output in zip(texts_2, outputs):
score = output.outputs.score
print(f"Pair: {[text_1, text_2]!r} \nScore: {score}")
print("-" * 60)
if __name__ == "__main__":
args = parse_args()
main(args)