Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

433 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Any, List, Optional, Tuple, Type, TypedDict, Union
import numpy.typing as npt
import pytest
import torch
from PIL import Image
from vllm.multimodal.image import rescale_image_size
from vllm.multimodal.video import rescale_video_size, sample_frames_from_video
from ....conftest import (IMAGE_ASSETS, VIDEO_ASSETS, PromptImageInput,
PromptVideoInput, VllmRunner)
from ...utils import check_logprobs_close
models = ["Qwen/Qwen2-VL-2B-Instruct"]
target_dtype = "half"
IMAGE_PLACEHOLDER = "<|vision_start|><|image_pad|><|vision_end|>"
VIDEO_PLACEHOLDER = "<|vision_start|><|video_pad|><|vision_end|>"
MODEL_HIDDEN_SIZE = 1536
def qwen2_vl_chat_template(*query):
return f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{''.join(query)}<|im_end|><|im_start|>assistant\n" # noqa: E501
IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
qwen2_vl_chat_template(
IMAGE_PLACEHOLDER,
"What is the biggest text's content in this image?",
),
"cherry_blossom":
qwen2_vl_chat_template(
IMAGE_PLACEHOLDER,
"What is the season shown in this image? ",
"Reply with a short sentence (no more than 20 words)",
),
})
VIDEO_PROMPTS = VIDEO_ASSETS.prompts({
"sample_demo_1":
qwen2_vl_chat_template(
VIDEO_PLACEHOLDER,
"Describe this video with a short sentence ",
"(no more than 20 words)",
),
})
MULTIIMAGE_PROMPT = qwen2_vl_chat_template(
IMAGE_PLACEHOLDER,
IMAGE_PLACEHOLDER,
"Describe these two images separately. ",
"For each image, reply with a short sentence ",
"(no more than 10 words).",
)
class Qwen2VLPromptImageEmbeddingInput(TypedDict):
image_embeds: torch.Tensor
image_grid_thw: torch.Tensor
class Qwen2VLPromptVideoEmbeddingInput(TypedDict):
video_embeds: torch.Tensor
video_grid_thw: torch.Tensor
def batch_make_image_embeddings(
image_batches: List[Union[Image.Image, List[Image.Image]]], processor,
llm: VllmRunner) -> List[Qwen2VLPromptImageEmbeddingInput]:
"""batched image embeddings for Qwen2-VL
This will infer all images' embeddings in a single batch,
and split the result according to input batches.
image_batches:
- Single-image batches: `List[Image.Image]`
- Multiple-image batches: `List[List[Image.Image]]]`
returns: `List[Qwen2VLPromptImageEmbeddingInput]`
"""
image_batches_: List[Any] = image_batches[:]
# convert single-image batches to multiple-image batches
for idx in range(len(image_batches_)):
if not isinstance(image_batches_[idx], list):
image_batches_[idx] = [image_batches_[idx]]
assert isinstance(image_batches_[idx], list)
# append all images into a list (as a batch)
images: List[Image.Image] = []
for image_batch in image_batches_:
images += image_batch
# image to pixel values
image_processor = processor.image_processor
preprocess_result = image_processor \
.preprocess(images=images, return_tensors="pt") \
.data
pixel_values = preprocess_result["pixel_values"]
image_grid_thw = preprocess_result["image_grid_thw"]
# pixel values to embeddings & grid_thws
def get_image_embeds(model):
with torch.no_grad():
visual = model.visual
pixel_values_on_device = pixel_values.to(visual.device,
dtype=visual.dtype)
image_grid_thw_on_device = image_grid_thw.to(visual.device,
dtype=torch.int64)
return visual(pixel_values_on_device,
grid_thw=image_grid_thw_on_device)
image_embeds = torch.concat(llm.apply_model(get_image_embeds))
# split into original batches
result: List[Qwen2VLPromptImageEmbeddingInput] = []
image_counter = 0
embed_counter = 0
for image_batch in image_batches_:
cur_batch_image_count = len(image_batch)
merge_size = image_processor.merge_size
cur_batch_embed_len = sum(
grid_thw.prod(-1) // merge_size // merge_size
for grid_thw in image_grid_thw[image_counter:image_counter +
cur_batch_image_count])
result.append({
"image_embeds":
image_embeds[embed_counter:embed_counter + cur_batch_embed_len],
"image_grid_thw":
image_grid_thw[image_counter:image_counter +
cur_batch_image_count],
})
embed_counter += cur_batch_embed_len
image_counter += cur_batch_image_count
# ensure we don't lost any images or embeddings
assert embed_counter == image_embeds.size(0)
assert image_counter == image_grid_thw.size(0)
assert len(image_batches) == len(result)
return result
def batch_make_video_embeddings(
video_batches: PromptVideoInput, processor,
llm: VllmRunner) -> List[Qwen2VLPromptVideoEmbeddingInput]:
"""batched video embeddings for Qwen2-VL
A NDArray represents a single video's all frames.
This will infer all videos' embeddings in a single batch,
and split the result according to input batches.
video_batches:
- Single-video batches: `List[NDArray]`
- Multiple-video batches: `List[List[NDArray]]`
"""
video_batches_: List[Any] = video_batches[:]
for idx in range(len(video_batches_)):
if not isinstance(video_batches_[idx], list):
single_video_batch: List[npt.NDArray] = [video_batches_[idx]]
video_batches_[idx] = single_video_batch
assert isinstance(video_batches_[idx], list)
# append all videos into a list (as a batch)
videos: List[npt.NDArray] = []
for video_batch in video_batches_:
videos += video_batch
# video to pixel values
image_processor = processor.image_processor
preprocess_result = image_processor \
.preprocess(images=None, videos=videos, return_tensors="pt") \
.data
pixel_values = preprocess_result["pixel_values_videos"]
video_grid_thw = preprocess_result["video_grid_thw"]
# pixel values to embeddings & grid_thws
def get_image_embeds(model):
with torch.no_grad():
visual = model.visual
pixel_values_on_device = pixel_values.to(visual.device,
dtype=visual.dtype)
video_grid_thw_on_device = video_grid_thw.to(visual.device,
dtype=torch.int64)
return visual(pixel_values_on_device,
grid_thw=video_grid_thw_on_device)
video_embeds = torch.concat(llm.apply_model(get_image_embeds))
# split into original batches
result: List[Qwen2VLPromptVideoEmbeddingInput] = []
video_counter = 0
embed_counter = 0
for video_batch in video_batches_:
cur_batch_video_count = len(video_batch)
merge_size = image_processor.merge_size
cur_batch_embed_len = sum(
grid_thw.prod(-1) // merge_size // merge_size
for grid_thw in video_grid_thw[video_counter:video_counter +
cur_batch_video_count])
result.append({
"video_embeds":
video_embeds[embed_counter:embed_counter + cur_batch_embed_len],
"video_grid_thw":
video_grid_thw[video_counter:video_counter +
cur_batch_video_count],
})
embed_counter += cur_batch_embed_len
video_counter += cur_batch_video_count
# ensure we don't lost any videos or embeddings
assert embed_counter == video_embeds.size(0)
assert video_counter == video_grid_thw.size(0)
assert len(video_batches) == len(result)
return result
def run_embedding_input_test(
vllm_runner: Type[VllmRunner],
inputs: List[Tuple[List[str], PromptImageInput, PromptVideoInput]],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
mm_limit: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Inference result should be the same between
original image/video input and image/video embeddings input.
"""
from transformers import AutoProcessor # noqa: F401
processor = AutoProcessor.from_pretrained(model)
# NOTE:
# max_model_len should be greater than image_feature_size
with vllm_runner(model,
task="generate",
max_model_len=4000,
max_num_seqs=3,
dtype=dtype,
limit_mm_per_prompt={
"image": mm_limit,
"video": mm_limit
},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend
) as vllm_model:
outputs_per_case_for_original_input = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images or None,
videos=videos or None)
for prompts, images, videos in inputs
]
outputs_per_case_for_embeddings_input = [
vllm_model.generate_greedy_logprobs(
prompts,
max_tokens,
num_logprobs=num_logprobs,
images=batch_make_image_embeddings(
images, processor, vllm_model) if images else None,
videos=batch_make_video_embeddings(
videos, processor, vllm_model) if videos else None)
for prompts, images, videos in inputs
]
for outputs_for_original_input, \
outputs_for_embeddings_input \
in zip(outputs_per_case_for_original_input,
outputs_per_case_for_embeddings_input):
check_logprobs_close(
outputs_0_lst=outputs_for_original_input,
outputs_1_lst=outputs_for_embeddings_input,
name_0="original_input",
name_1="embeddings_input",
)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# Single-scale
[0.5],
# Single-scale, batched
[0.5, 0.5],
# Multi-scale
[0.25, 0.5, 0.5],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_qwen2_vl_image_embeddings_input(vllm_runner, image_assets, model,
size_factors, dtype: str,
max_tokens: int,
num_logprobs: int) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case: List[Tuple[
List[str], PromptImageInput, PromptVideoInput]] = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
[],
) for image, prompt in zip(images, IMAGE_PROMPTS)]
run_embedding_input_test(
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
[],
# Single-scale
[0.5],
# Single-scale, batched
[0.5, 0.5],
# Multi-scale
[0.25, 0.5, 0.5],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_qwen2_vl_multiple_image_embeddings_input(vllm_runner, image_assets,
model, size_factors,
dtype: str, max_tokens: int,
num_logprobs: int) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case: List[Tuple[List[str], PromptImageInput,
PromptVideoInput]] = [(
[MULTIIMAGE_PROMPT for _ in size_factors],
[[
rescale_image_size(image, factor)
for image in images
] for factor in size_factors],
[],
)]
run_embedding_input_test(
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=2,
tensor_parallel_size=1,
)
@pytest.mark.core_model
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# Single-scale
[0.5],
# Single-scale, batched
[0.5, 0.5],
# Multi-scale
[0.25, 0.25, 0.5],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_qwen2_vl_video_embeddings_input(vllm_runner, video_assets, model,
size_factors, dtype: str,
max_tokens: int,
num_logprobs: int) -> None:
num_frames = 4
sampled_vids = [
sample_frames_from_video(asset.np_ndarrays, num_frames)
for asset in video_assets
]
inputs_per_case: List[Tuple[
List[str], PromptImageInput, PromptVideoInput]] = [(
[prompt for _ in size_factors],
[],
[rescale_video_size(video, factor) for factor in size_factors],
) for video, prompt in zip(sampled_vids, VIDEO_PROMPTS)]
run_embedding_input_test(
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)