mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:44:57 +08:00
271 lines
11 KiB
Python
271 lines
11 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import random
|
|
import sys
|
|
from typing import Union
|
|
|
|
import pytest
|
|
|
|
from tests.utils import create_new_process_for_each_test
|
|
# yapf: disable
|
|
from tests.v1.logits_processors.utils import (DUMMY_LOGITPROC_ARG,
|
|
DUMMY_LOGITPROC_FQCN,
|
|
DUMMY_LOGITPROC_MODULE,
|
|
MAX_TOKENS, MODEL_NAME,
|
|
POOLING_MODEL_NAME, TEMP_GREEDY,
|
|
CustomLogitprocSource,
|
|
DummyLogitsProcessor,
|
|
WrappedPerReqLogitsProcessor,
|
|
dummy_module)
|
|
from tests.v1.logits_processors.utils import entry_points as fake_entry_points
|
|
from tests.v1.logits_processors.utils import prompts
|
|
# yapf: enable
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.v1.sample.logits_processor import (STR_POOLING_REJECTS_LOGITSPROCS,
|
|
LogitsProcessor)
|
|
|
|
# Create a mixture of requests which do and don't utilize the dummy logitproc
|
|
sampling_params_list = [
|
|
SamplingParams(temperature=TEMP_GREEDY,
|
|
max_tokens=MAX_TOKENS,
|
|
extra_args={DUMMY_LOGITPROC_ARG: 128}),
|
|
SamplingParams(temperature=TEMP_GREEDY, max_tokens=MAX_TOKENS),
|
|
SamplingParams(temperature=TEMP_GREEDY,
|
|
max_tokens=MAX_TOKENS,
|
|
extra_args={DUMMY_LOGITPROC_ARG: 67}),
|
|
SamplingParams(temperature=TEMP_GREEDY, max_tokens=MAX_TOKENS),
|
|
]
|
|
|
|
|
|
def _run_test(kwargs: dict, logitproc_loaded: bool) -> None:
|
|
"""Compare `LLM` instance initialized with specified `kwargs` against
|
|
reference `LLM` instance.
|
|
|
|
Two scenarios:
|
|
1. Server has loaded dummy logitproc; test that requests which specify
|
|
dummy logitproc arg value behave as if logitproc is operating (output
|
|
token value should repeat), while requests that don't specify dummy
|
|
logitproc arg value should match reference `LLM` output.
|
|
2. Server has *not* loaded dummy logitproc; test that all requests
|
|
behave as if logitproc is *not* operating (output matches reference
|
|
`LLM` output.)
|
|
|
|
Args:
|
|
kwargs: `LLM` constructor kwargs
|
|
logitproc_loaded: server has loaded dummy logitproc if True
|
|
"""
|
|
|
|
# Create a vLLM instance and load custom logitproc
|
|
llm_logitproc = LLM(
|
|
model=MODEL_NAME,
|
|
gpu_memory_utilization=0.1,
|
|
**kwargs,
|
|
)
|
|
|
|
# Create a reference vLLM instance without custom logitproc
|
|
llm_ref = LLM(model=MODEL_NAME, gpu_memory_utilization=0.1)
|
|
|
|
# Run inference with logitproc loaded
|
|
outputs_logitproc = llm_logitproc.generate(prompts, sampling_params_list)
|
|
|
|
# Reference run
|
|
outputs_ref = llm_ref.generate(prompts, sampling_params_list)
|
|
|
|
# Validate outputs
|
|
for bdx, (out_lp, out_ref, params) in enumerate(
|
|
zip(outputs_logitproc, outputs_ref, sampling_params_list)):
|
|
lp_toks = out_lp.outputs[0].token_ids
|
|
if logitproc_loaded and params.extra_args:
|
|
# This request exercises custom logitproc; validate that logitproc
|
|
# forces `target_token` to be decoded in each step
|
|
target_token = params.extra_args[DUMMY_LOGITPROC_ARG]
|
|
if not all(x == target_token for x in lp_toks):
|
|
raise AssertionError(
|
|
f"Request {bdx} generated {lp_toks}, should all be "
|
|
f"{target_token}")
|
|
else:
|
|
# This request does not exercise custom logitproc (or custom
|
|
# logitproc is not enabled on this server); validate against
|
|
# reference result
|
|
ref_toks = out_ref.outputs[0].token_ids
|
|
if lp_toks != ref_toks:
|
|
raise AssertionError(
|
|
f"Request {bdx} generated {lp_toks}, should match "
|
|
f"{ref_toks}")
|
|
|
|
|
|
@create_new_process_for_each_test()
|
|
@pytest.mark.parametrize("logitproc_source", list(CustomLogitprocSource))
|
|
def test_custom_logitsprocs(monkeypatch,
|
|
logitproc_source: CustomLogitprocSource):
|
|
"""Test offline Python interface for passing custom logitsprocs
|
|
|
|
Construct an `LLM` instance which loads a custom logitproc that has a
|
|
well-defined behavior (mask out all tokens except one `target_token`)
|
|
|
|
Construct a reference `LLM` instance with no custom logitproc
|
|
|
|
Pass in a batch of requests, 50% of which pass a `target_token` value
|
|
in through `SamplingParams.extra_args`, 50% of which do not.
|
|
|
|
Validate that
|
|
* Requests which do not activate the custom logitproc, yield the same
|
|
results for both `LLM` instances
|
|
* Requests which activate the custom logitproc, only output `target_token`
|
|
|
|
Test four scenarios, corresponding to `logitproc_source` value
|
|
* No logitsprocs loaded - test that generated tokens match reference `LLM`
|
|
instance output
|
|
* Logitproc passed in via {entrypoint, class object, fully-qualified class
|
|
name (FQCN)} - test that dummy logitproc is utilized correctly when
|
|
provided via any of these three possible sources
|
|
|
|
Args:
|
|
monkeypatch: for setting env vars
|
|
logitproc_source: what source (entrypoint, fully-qualified class name
|
|
(FQCN), class object, or None) the user pulls the
|
|
logitproc from
|
|
"""
|
|
|
|
# Test that logitproc info is passed to workers
|
|
monkeypatch.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1")
|
|
random.seed(40)
|
|
|
|
# Choose LLM args based on logitproc source
|
|
if logitproc_source == CustomLogitprocSource.LOGITPROC_SOURCE_NONE:
|
|
# Scenario: the server does not load any custom logitproc
|
|
# Every other scenario is a different way of loading a custom logitproc
|
|
_run_test({}, logitproc_loaded=False)
|
|
return
|
|
|
|
if logitproc_source == CustomLogitprocSource.LOGITPROC_SOURCE_ENTRYPOINT:
|
|
# Scenario: vLLM loads a logitproc from a preconfigured entrypoint
|
|
# To that end, mock a dummy logitproc entrypoint
|
|
import importlib.metadata
|
|
importlib.metadata.entry_points = fake_entry_points # type: ignore
|
|
|
|
# fork is required for workers to see entrypoint patch
|
|
monkeypatch.setenv("VLLM_WORKER_MULTIPROC_METHOD", "fork")
|
|
_run_test({}, logitproc_loaded=True)
|
|
return
|
|
|
|
kwargs: dict[str, list[Union[str, type[LogitsProcessor]]]] = {}
|
|
if logitproc_source == CustomLogitprocSource.LOGITPROC_SOURCE_FQCN:
|
|
# Scenario: load logitproc based on fully-qualified class name (FQCN)
|
|
# Inject dummy module which defines logitproc
|
|
sys.modules[DUMMY_LOGITPROC_MODULE] = dummy_module
|
|
kwargs["logits_processors"] = [DUMMY_LOGITPROC_FQCN]
|
|
elif logitproc_source == CustomLogitprocSource.LOGITPROC_SOURCE_CLASS:
|
|
# Scenario: load logitproc from provided class object
|
|
kwargs["logits_processors"] = [DummyLogitsProcessor]
|
|
|
|
_run_test(kwargs, logitproc_loaded=True)
|
|
|
|
|
|
@create_new_process_for_each_test()
|
|
def test_custom_logitsprocs_req(monkeypatch):
|
|
"""Test passing request-level logits processor to offline Python interface
|
|
|
|
Wrap a request-level logits processor to create a batch level logits
|
|
processor that has a well-defined behavior (mask out all tokens except one
|
|
`target_token`)
|
|
|
|
Construct an `LLM` instance which loads the wrapped logits processor. Pass
|
|
the custom logitproc as a class object.
|
|
|
|
Construct a reference `LLM` instance with no custom logitproc
|
|
|
|
Pass in a batch of requests, 50% of which pass a `target_token` value
|
|
in through `SamplingParams.extra_args`, 50% of which do not.
|
|
|
|
Validate that
|
|
* Requests which do not activate the custom logitproc, yield the same
|
|
results for both `LLM` instances
|
|
* Requests which activate the custom logitproc, only output `target_token`
|
|
|
|
Args:
|
|
monkeypatch: for setting env vars
|
|
"""
|
|
|
|
# Test that logitproc info is passed to workers
|
|
monkeypatch.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1")
|
|
random.seed(40)
|
|
_run_test({"logits_processors": [WrappedPerReqLogitsProcessor]},
|
|
logitproc_loaded=True)
|
|
|
|
|
|
@create_new_process_for_each_test()
|
|
@pytest.mark.parametrize("logitproc_source", [
|
|
CustomLogitprocSource.LOGITPROC_SOURCE_ENTRYPOINT,
|
|
CustomLogitprocSource.LOGITPROC_SOURCE_FQCN,
|
|
CustomLogitprocSource.LOGITPROC_SOURCE_CLASS,
|
|
])
|
|
def test_pooling_rejects_custom_logitsprocs(
|
|
monkeypatch, logitproc_source: CustomLogitprocSource):
|
|
"""Validate that vLLM engine initialization properly rejects custom
|
|
logitsprocs when the model is a pooling model.
|
|
|
|
Use `LLM` entrypoint. We expect `LLM` initialization to fail before the
|
|
logitproc is actually loaded.
|
|
|
|
Scenario 1:
|
|
* Mock a logitproc entrypoint
|
|
* Validate that `LLM` does not load the logitproc
|
|
|
|
Scenario 2:
|
|
* Pass custom logitproc to `LLM` constructor
|
|
* Scenario 2a: via FQCN
|
|
* Scenario 2b: via class object
|
|
* Validate that initialization fails with appropriate exception
|
|
|
|
Args:
|
|
monkeypatch: used to set environment variables
|
|
logitproc_source: what source (entrypoint, fully-qualified class name
|
|
(FQCN), or class object) the user pulls the
|
|
logitproc from
|
|
"""
|
|
monkeypatch.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
|
|
random.seed(40)
|
|
|
|
if logitproc_source == CustomLogitprocSource.LOGITPROC_SOURCE_ENTRYPOINT:
|
|
# Scenario: vLLM loads a pooling model and ignores a logitproc that is
|
|
# available at a preconfigured entrypoint
|
|
|
|
# Patch in dummy logitproc entrypoint
|
|
import importlib.metadata
|
|
importlib.metadata.entry_points = fake_entry_points # type: ignore
|
|
|
|
# fork is required for entrypoint patch to be visible to workers,
|
|
# although they should ignore the entrypoint patch anyway
|
|
monkeypatch.setenv("VLLM_WORKER_MULTIPROC_METHOD", "fork")
|
|
|
|
llm = LLM(
|
|
runner="pooling",
|
|
model=POOLING_MODEL_NAME,
|
|
gpu_memory_utilization=0.1,
|
|
)
|
|
# Require that no logitsprocs have been loaded
|
|
assert sum([
|
|
1 for _ in llm.llm_engine.model_executor.driver_worker.worker.
|
|
model_runner.input_batch.logitsprocs.all
|
|
]) == 0
|
|
return
|
|
|
|
kwargs: dict[str, list[Union[str, type[LogitsProcessor]]]] = {}
|
|
if logitproc_source == CustomLogitprocSource.LOGITPROC_SOURCE_FQCN:
|
|
# Scenario: load logitproc based on fully-qualified class name (FQCN)
|
|
kwargs["logits_processors"] = [DUMMY_LOGITPROC_FQCN]
|
|
elif logitproc_source == CustomLogitprocSource.LOGITPROC_SOURCE_CLASS:
|
|
# Scenario: load logitproc from provided class object
|
|
kwargs["logits_processors"] = [DummyLogitsProcessor]
|
|
|
|
with pytest.raises(ValueError, match=STR_POOLING_REJECTS_LOGITSPROCS):
|
|
# Require that loading a pooling model alongside the logitproc raises
|
|
# the appropriate exception.
|
|
LLM(
|
|
runner="pooling",
|
|
model=POOLING_MODEL_NAME,
|
|
gpu_memory_utilization=0.1,
|
|
**kwargs,
|
|
)
|