mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 10:15:03 +08:00
331 lines
13 KiB
Python
331 lines
13 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only GPT-NeoX model compatible with HuggingFace weights."""
|
|
from typing import Iterable, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import GPTNeoXConfig
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsPP
|
|
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
maybe_prefix)
|
|
|
|
|
|
class GPTNeoXAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPTNeoXConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.total_num_heads = config.num_attention_heads
|
|
self.hidden_size = config.hidden_size
|
|
self.head_size = self.hidden_size // self.total_num_heads
|
|
self.bias = getattr(config, "attention_bias", True)
|
|
|
|
tensor_model_parallel_world_size = (
|
|
get_tensor_model_parallel_world_size())
|
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = (self.total_num_heads //
|
|
tensor_model_parallel_world_size)
|
|
|
|
self.query_key_value = QKVParallelLinear(
|
|
config.hidden_size,
|
|
self.head_size,
|
|
self.total_num_heads,
|
|
bias=self.bias,
|
|
quant_config=quant_config,
|
|
)
|
|
self.dense = RowParallelLinear(
|
|
config.hidden_size,
|
|
config.hidden_size,
|
|
bias=self.bias,
|
|
quant_config=quant_config,
|
|
)
|
|
scaling = self.head_size**-0.5
|
|
rotary_dim = int(self.head_size * config.rotary_pct)
|
|
assert rotary_dim % 2 == 0
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
|
8192)
|
|
self.rotary_emb = get_rope(
|
|
self.head_size,
|
|
rotary_dim=rotary_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_size,
|
|
scaling,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.query_key_value(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
q, k = self.rotary_emb(position_ids, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.dense(attn_output)
|
|
return output
|
|
|
|
|
|
class GPTNeoXMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPTNeoXConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.dense_h_to_4h = ColumnParallelLinear(
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
quant_config=quant_config,
|
|
)
|
|
self.dense_4h_to_h = RowParallelLinear(
|
|
config.intermediate_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
)
|
|
self.act = get_act_fn(config.hidden_act)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states, _ = self.dense_h_to_4h(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states, _ = self.dense_4h_to_h(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPTNeoXLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPTNeoXConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.use_parallel_residual = config.use_parallel_residual
|
|
self.input_layernorm = nn.LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.attention = GPTNeoXAttention(config,
|
|
cache_config,
|
|
quant_config,
|
|
prefix=f"{prefix}.attention")
|
|
self.mlp = GPTNeoXMLP(config, quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
attn_input = self.input_layernorm(hidden_states)
|
|
attn_output = self.attention(
|
|
position_ids=position_ids,
|
|
hidden_states=attn_input,
|
|
)
|
|
|
|
if self.use_parallel_residual:
|
|
# pseudocode:
|
|
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
|
mlp_input = self.post_attention_layernorm(hidden_states)
|
|
mlp_output = self.mlp(mlp_input)
|
|
hidden_states = mlp_output + attn_output + hidden_states
|
|
else:
|
|
# pseudocode:
|
|
# x = x + attn(ln1(x))
|
|
# x = x + mlp(ln2(x))
|
|
attn_output = attn_output + hidden_states
|
|
mlp_input = self.post_attention_layernorm(attn_output)
|
|
mlp_output = self.mlp(mlp_input)
|
|
hidden_states = mlp_output + attn_output
|
|
return hidden_states
|
|
|
|
|
|
@support_torch_compile
|
|
class GPTNeoXModel(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
|
|
self.embed_in = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: GPTNeoXLayer(
|
|
config, cache_config, quant_config, prefix=prefix),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
|
config.hidden_size))
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_in(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
else:
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
for layer in self.layers[self.start_layer:self.end_layer]:
|
|
hidden_states = layer(position_ids, hidden_states)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: Set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if ("attention.bias" in name or "attention.masked_bias" in name
|
|
or "rotary_emb.inv_freq" in name):
|
|
continue
|
|
if ("rotary_emb.cos_cached" in name
|
|
or "rotary_emb.sin_cached" in name):
|
|
# Models trained using OpenRLHF may include
|
|
# these tensors in the checkpoint. Skip them.
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
|
|
if "query_key_value" in name:
|
|
# NOTE: GPT-NeoX's fused QKV's output_dim has the shape of
|
|
# (num_heads * 3 * head_size), while the
|
|
# required shape is (3 * num_heads * head_size).
|
|
# Thus, we need weight conversion.
|
|
output_dim = getattr(param, "output_dim", None)
|
|
num_heads = self.config.num_attention_heads
|
|
if output_dim is not None:
|
|
loaded_weight_shape = loaded_weight.shape
|
|
loaded_weight = loaded_weight.view(
|
|
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
|
|
loaded_weight_shape[output_dim + 1:])
|
|
loaded_weight = loaded_weight.transpose(
|
|
output_dim, output_dim + 1)
|
|
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
|
|
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class GPTNeoXForCausalLM(nn.Module, SupportsPP):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.gpt_neox = GPTNeoXModel(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "gpt_neox"))
|
|
self.embed_out = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
)
|
|
if self.config.tie_word_embeddings:
|
|
self.embed_out.weight = self.gpt_neox.embed_in.weight
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.gpt_neox.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.gpt_neox.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.gpt_neox(input_ids, positions,
|
|
intermediate_tensors, inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.embed_out, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|