vllm/vllm/model_executor/models/internlm2_ve.py

147 lines
5.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.models.internlm2 import (InternLM2Attention,
InternLM2ForCausalLM,
InternLM2MLP, InternLM2Model)
from vllm.sequence import IntermediateTensors
class InternLM2VEDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.attention = InternLM2Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
self.feed_forward = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.feed_forward_ve = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward_ve",
)
self.attention_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
visual_token_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.attention_norm(hidden_states)
else:
hidden_states, residual = self.attention_norm(
hidden_states, residual)
hidden_states = self.attention(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
hidden_states, residual = self.ffn_norm(hidden_states, residual)
if visual_token_mask is not None and visual_token_mask.any():
visual_token_mask = visual_token_mask.repeat(
1, self.hidden_size).bool()
text_token_mask = ~visual_token_mask
hidden_states[visual_token_mask] = self.feed_forward_ve(
hidden_states[visual_token_mask].reshape(
-1, self.hidden_size)).flatten()
if text_token_mask.any():
hidden_states[text_token_mask] = self.feed_forward(
hidden_states[text_token_mask].reshape(
-1, self.hidden_size)).flatten()
else:
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
class InternLM2VEModel(InternLM2Model):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config,
prefix=prefix,
layer_type=InternLM2VEDecoderLayer)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
visual_token_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.tok_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states, residual = layer(
positions,
hidden_states,
residual,
visual_token_mask=visual_token_mask,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class InternLM2VEForCausalLM(InternLM2ForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config,
prefix=prefix,
model_type=InternLM2VEModel)