mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-12 00:05:42 +08:00
Signed-off-by: Bill Nell <bnell@redhat.com> Co-authored-by: Michael Goin <mgoin64@gmail.com>
628 lines
22 KiB
Python
628 lines
22 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from dataclasses import dataclass
|
|
from typing import Any, Optional, Union
|
|
|
|
import torch
|
|
|
|
import vllm._custom_ops as ops
|
|
import vllm.model_executor.layers.fused_moe.modular_kernel as mk
|
|
from tests.kernels.moe.utils import make_test_weights, per_token_cast_to_fp8
|
|
from tests.kernels.quantization.nvfp4_utils import (FLOAT4_E2M1_MAX,
|
|
FLOAT8_E4M3_MAX,
|
|
dequantize_nvfp4_to_dtype)
|
|
from tests.kernels.utils import torch_experts
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import get_dp_group, get_tensor_model_parallel_world_size
|
|
from vllm.forward_context import set_forward_context
|
|
from vllm.model_executor.layers.fused_moe.config import (
|
|
FusedMoEConfig, FusedMoEParallelConfig, FusedMoEQuantConfig)
|
|
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
|
|
from vllm.utils import has_deep_ep, has_deep_gemm, has_pplx
|
|
|
|
from .mk_objects import (expert_info, make_fused_experts,
|
|
make_prepare_finalize, prepare_finalize_info)
|
|
from .parallel_utils import ProcessGroupInfo
|
|
|
|
|
|
def _describe_tensor(t: Optional[torch.Tensor], name: str) -> str:
|
|
if t is None:
|
|
return f"{name} : None"
|
|
else:
|
|
return f"{name} : {t.shape} {t.dtype} {t.device}"
|
|
|
|
|
|
@dataclass
|
|
class Config:
|
|
Ms: Union[list[int], int]
|
|
K: int
|
|
N: int
|
|
E: int
|
|
topks: Union[list[int], int]
|
|
dtype: torch.dtype
|
|
quant_config: Optional[FusedMoEQuantConfig]
|
|
|
|
prepare_finalize_type: mk.FusedMoEPrepareAndFinalize
|
|
fused_experts_type: mk.FusedMoEPermuteExpertsUnpermute
|
|
|
|
fused_moe_chunk_size: Optional[int]
|
|
world_size: int
|
|
|
|
torch_trace_dir_path: Optional[str] = None
|
|
|
|
def __post_init__(self):
|
|
if self.quant_config is None:
|
|
self.quant_config = FusedMoEQuantConfig()
|
|
|
|
def describe(self) -> str:
|
|
s = ""
|
|
s += "== Config:\n"
|
|
s += f" world_size={self.world_size}\n"
|
|
s += f" PF={self.prepare_finalize_type.__name__}\n"
|
|
s += f" FE={self.fused_experts_type.__name__}\n"
|
|
s += f" E={self.E}\n"
|
|
s += f" Ms={self.Ms}\n"
|
|
s += f" N={self.N}\n"
|
|
s += f" K={self.K}\n"
|
|
s += f" topk={self.topks}\n"
|
|
s += f" dtype={self.dtype}\n"
|
|
s += f" fused_moe_chunk_size={self.fused_moe_chunk_size}\n"
|
|
s += " Quant:\n"
|
|
if self.quant_config is not None:
|
|
s += f" q_dtype={self.quant_dtype}\n"
|
|
s += f" q_block_shape={self.quant_block_shape}\n"
|
|
s += f" q_per_out_ch_quant={self.is_per_out_ch_quant}\n"
|
|
s += f" q_per_act_token={self.is_per_act_token_quant}\n"
|
|
else:
|
|
s += " quant=None\n"
|
|
return s
|
|
|
|
@property
|
|
def M(self) -> int:
|
|
assert isinstance(self.Ms, int)
|
|
return self.Ms
|
|
|
|
@property
|
|
def quant_dtype(self) -> Union[torch.dtype, str, None]:
|
|
assert self.quant_config is not None
|
|
return self.quant_config.quant_dtype
|
|
|
|
@property
|
|
def is_per_act_token_quant(self) -> bool:
|
|
assert self.quant_config is not None
|
|
return self.quant_config.per_act_token_quant
|
|
|
|
@property
|
|
def is_per_tensor_act_quant(self) -> bool:
|
|
return (not self.is_per_act_token_quant
|
|
and self.quant_block_shape is None)
|
|
|
|
@property
|
|
def is_per_out_ch_quant(self) -> bool:
|
|
assert self.quant_config is not None
|
|
return self.quant_config.per_out_ch_quant
|
|
|
|
@property
|
|
def quant_block_shape(self) -> Optional[list[int]]:
|
|
assert self.quant_config is not None
|
|
return self.quant_config.block_shape
|
|
|
|
@property
|
|
def topk(self) -> int:
|
|
assert isinstance(self.topks, int)
|
|
return self.topks
|
|
|
|
@property
|
|
def num_local_experts(self) -> int:
|
|
return self.E // self.world_size
|
|
|
|
def make_env_data(self) -> tuple[VllmConfig, dict[Any, Any]]:
|
|
"""
|
|
make env data for vllm launch.
|
|
"""
|
|
vllm_config = VllmConfig()
|
|
vllm_config.parallel_config.data_parallel_size = self.world_size
|
|
vllm_config.parallel_config.enable_expert_parallel = True
|
|
|
|
env_dict = {
|
|
"VLLM_USE_DEEP_GEMM": str(int(self.needs_deep_gemm())),
|
|
}
|
|
|
|
backend = self.all2all_backend()
|
|
if backend is not None:
|
|
env_dict.update({"VLLM_ALL2ALL_BACKEND": backend})
|
|
|
|
if self.fused_moe_chunk_size is not None:
|
|
env_dict.update(
|
|
{"VLLM_FUSED_MOE_CHUNK_SIZE": str(self.fused_moe_chunk_size)})
|
|
|
|
return vllm_config, env_dict
|
|
|
|
def is_fp8_block_quantized(self):
|
|
return (self.quant_dtype == torch.float8_e4m3fn
|
|
and self.quant_block_shape is not None)
|
|
|
|
def is_batched_prepare_finalize(self):
|
|
info = prepare_finalize_info(self.prepare_finalize_type)
|
|
return (mk.FusedMoEActivationFormat.BatchedExperts ==
|
|
info.activation_format)
|
|
|
|
def is_batched_fused_experts(self):
|
|
info = expert_info(self.fused_experts_type)
|
|
return (mk.FusedMoEActivationFormat.BatchedExperts ==
|
|
info.activation_format)
|
|
|
|
def is_standard_fused_experts(self):
|
|
info = expert_info(self.fused_experts_type)
|
|
return mk.FusedMoEActivationFormat.Standard == info.activation_format
|
|
|
|
def fe_supported_types(self):
|
|
info = expert_info(self.fused_experts_type)
|
|
return info.supported_dtypes
|
|
|
|
def pf_supported_types(self):
|
|
info = prepare_finalize_info(self.prepare_finalize_type)
|
|
return info.supported_dtypes
|
|
|
|
def is_block_quant_supported(self):
|
|
info = expert_info(self.fused_experts_type)
|
|
return info.blocked_quantization_support
|
|
|
|
def is_fe_supports_chunking(self):
|
|
info = expert_info(self.fused_experts_type)
|
|
return info.supports_chunking
|
|
|
|
def supports_expert_map(self):
|
|
info = expert_info(self.fused_experts_type)
|
|
return info.supports_expert_map
|
|
|
|
def supports_apply_weight_on_input(self):
|
|
info = prepare_finalize_info(self.prepare_finalize_type)
|
|
return info.supports_apply_weight_on_input
|
|
|
|
def needs_deep_gemm(self):
|
|
info = expert_info(self.fused_experts_type)
|
|
return info.needs_deep_gemm
|
|
|
|
def needs_pplx(self):
|
|
info = prepare_finalize_info(self.prepare_finalize_type)
|
|
return info.backend == "pplx"
|
|
|
|
def needs_deep_ep(self):
|
|
info = prepare_finalize_info(self.prepare_finalize_type)
|
|
return (info.backend == "deepep_high_throughput"
|
|
or info.backend == "deepep_low_latency")
|
|
|
|
def all2all_backend(self):
|
|
info = prepare_finalize_info(self.prepare_finalize_type)
|
|
return info.backend
|
|
|
|
def is_valid(self):
|
|
# Check prepare-finalize and fused-experts compatibility
|
|
if self.is_batched_prepare_finalize():
|
|
if not self.is_batched_fused_experts():
|
|
return False
|
|
else:
|
|
if not self.is_standard_fused_experts():
|
|
return False
|
|
|
|
use_chunking = self.fused_moe_chunk_size is not None
|
|
if use_chunking and not self.is_fe_supports_chunking():
|
|
return False
|
|
|
|
# Check quantization sanity
|
|
if (int(self.is_per_act_token_quant) +
|
|
int(self.is_per_tensor_act_quant) +
|
|
int(self.quant_block_shape is not None)) > 1:
|
|
# invalid quant config
|
|
return False
|
|
|
|
# check type support
|
|
if self.quant_dtype is None:
|
|
if (self.dtype not in self.pf_supported_types()
|
|
or self.dtype not in self.fe_supported_types()):
|
|
return False
|
|
else:
|
|
if (self.quant_dtype not in self.pf_supported_types()
|
|
or self.quant_dtype not in self.fe_supported_types()):
|
|
return False
|
|
|
|
# Check block quanization support
|
|
is_block_quatized = self.quant_block_shape is not None
|
|
if is_block_quatized and self.quant_dtype is None:
|
|
return False
|
|
if is_block_quatized and not self.is_block_quant_supported():
|
|
return False
|
|
|
|
# deep_gemm only works with block-quantized
|
|
if self.needs_deep_gemm() and not is_block_quatized:
|
|
return False
|
|
|
|
# Check dependencies (turn into asserts?)
|
|
if self.needs_deep_ep() and not has_deep_ep():
|
|
return False
|
|
if self.needs_deep_gemm() and not has_deep_gemm():
|
|
return False
|
|
if self.needs_pplx() and not has_pplx(): # noqa: SIM103
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
@dataclass
|
|
class WeightTensors:
|
|
w1: torch.Tensor
|
|
w2: torch.Tensor
|
|
w1_scale: Optional[torch.Tensor]
|
|
w2_scale: Optional[torch.Tensor]
|
|
w1_gs: Optional[torch.Tensor] = None
|
|
w2_gs: Optional[torch.Tensor] = None
|
|
|
|
def describe(self):
|
|
s = ""
|
|
s += "== Weight Tensors: \n"
|
|
s += f' - {_describe_tensor(self.w1, "w1")} \n'
|
|
s += f' - {_describe_tensor(self.w2, "w2")} \n'
|
|
s += f' - {_describe_tensor(self.w1_scale, "w1_scale")} \n'
|
|
s += f' - {_describe_tensor(self.w2_scale, "w2_scale")} \n'
|
|
s += f' - {_describe_tensor(self.w1_gs, "w1_gs")} \n'
|
|
s += f' - {_describe_tensor(self.w2_gs, "w2_gs")} \n'
|
|
return s
|
|
|
|
def is_quantized(self) -> bool:
|
|
# or w1_scale is not None?
|
|
return (self.w1.dtype == torch.float8_e4m3fn
|
|
or self.w1.dtype == torch.uint8 or self.w1.dtype == torch.int8)
|
|
|
|
def to_current_device(self):
|
|
self.w1 = self.w1.to(device=torch.cuda.current_device())
|
|
self.w2 = self.w2.to(device=torch.cuda.current_device())
|
|
|
|
if self.is_quantized():
|
|
assert self.w1_scale is not None
|
|
assert self.w2_scale is not None
|
|
self.w1_scale = self.w1_scale.to(
|
|
device=torch.cuda.current_device())
|
|
self.w2_scale = self.w2_scale.to(
|
|
device=torch.cuda.current_device())
|
|
|
|
if self.w1_gs is not None:
|
|
assert self.w2_gs is not None
|
|
self.w1_gs = self.w1_gs.to(device=torch.cuda.current_device())
|
|
self.w2_gs = self.w2_gs.to(device=torch.cuda.current_device())
|
|
|
|
def slice_weights(self, rank: int,
|
|
num_local_experts: int) -> "WeightTensors":
|
|
s = rank * num_local_experts
|
|
e = s + num_local_experts
|
|
w1 = self.w1[s:e, :, :]
|
|
w2 = self.w2[s:e, :, :]
|
|
|
|
w1_scale, w2_scale = (None, None)
|
|
if self.is_quantized():
|
|
assert self.w1_scale is not None
|
|
assert self.w2_scale is not None
|
|
w1_scale = self.w1_scale[s:e, :, :]
|
|
w2_scale = self.w2_scale[s:e, :, :]
|
|
|
|
w1_gs = self.w1_gs
|
|
w2_gs = self.w2_gs
|
|
if w1_gs is not None:
|
|
assert w2_gs is not None
|
|
w1_gs = w1_gs[s:e]
|
|
w2_gs = w2_gs[s:e]
|
|
|
|
return WeightTensors(w1, w2, w1_scale, w2_scale, w1_gs, w2_gs)
|
|
|
|
@staticmethod
|
|
def make(config: Config) -> "WeightTensors":
|
|
(_, w1, w1_scale, w1_gs), (_, w2, w2_scale, w2_gs) = make_test_weights(
|
|
e=config.E,
|
|
n=config.N,
|
|
k=config.K,
|
|
in_dtype=config.dtype,
|
|
quant_dtype=config.quant_dtype,
|
|
block_shape=config.quant_block_shape,
|
|
per_act_token_quant=config.is_per_out_ch_quant,
|
|
)
|
|
return WeightTensors(w1=w1,
|
|
w2=w2,
|
|
w1_scale=w1_scale,
|
|
w2_scale=w2_scale,
|
|
w1_gs=w1_gs,
|
|
w2_gs=w2_gs)
|
|
|
|
|
|
@dataclass
|
|
class RankTensors:
|
|
hidden_states: torch.Tensor
|
|
hidden_states_scale: Optional[torch.Tensor]
|
|
|
|
topk_weights: torch.Tensor
|
|
topk_ids: torch.Tensor
|
|
expert_map: Optional[torch.Tensor]
|
|
|
|
quant_config: Optional[FusedMoEQuantConfig]
|
|
|
|
def describe(self):
|
|
s = ""
|
|
s += "== Rank Tensors: \n"
|
|
s += f' - {_describe_tensor(self.hidden_states, "HS")} \n'
|
|
s += f' - {_describe_tensor(self.hidden_states_scale, "HS_scale")} \n'
|
|
s += f' - {_describe_tensor(self.topk_weights, "topk_weights")} \n'
|
|
s += f' - {_describe_tensor(self.topk_ids, "topk_ids")} \n'
|
|
s += f' - {_describe_tensor(self.expert_map, "expert_map")} \n'
|
|
return s
|
|
|
|
@staticmethod
|
|
def make_hidden_states(
|
|
config: Config) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
"""
|
|
Return hidden_states
|
|
"""
|
|
m, k, dtype = (config.M, config.K, config.dtype)
|
|
a = (torch.randn(
|
|
(m, k), device=torch.cuda.current_device(), dtype=dtype) / 15.0)
|
|
|
|
if config.quant_dtype is None:
|
|
return a, None
|
|
|
|
# We dequant and use that as hidden_states so the tests are stable.
|
|
# quantizing and dequantizing yield slightly different results
|
|
# depending on the hardware. Here we, quantize and dequantize
|
|
# first - so further quantize and dequantize will yield the same
|
|
# values.
|
|
if config.is_per_tensor_act_quant:
|
|
a_q, a_scales = ops.scaled_fp8_quant(
|
|
a, use_per_token_if_dynamic=False)
|
|
return a_q.float().mul(a_scales).to(dtype), a_scales
|
|
|
|
if config.is_per_act_token_quant:
|
|
a_q, a_scales = ops.scaled_fp8_quant(a,
|
|
use_per_token_if_dynamic=True)
|
|
return a_q.float().mul(a_scales).to(dtype), None
|
|
|
|
assert config.quant_block_shape is not None
|
|
block_k = config.quant_block_shape[1]
|
|
a_q, a_scales = per_token_cast_to_fp8(a, block_size=block_k)
|
|
return a_q.float().view(
|
|
(-1, block_k)).mul(a_scales.view(-1, 1)).view(m, k).to(dtype), None
|
|
|
|
@staticmethod
|
|
def make(config: Config, pgi: ProcessGroupInfo):
|
|
|
|
dtype = config.dtype
|
|
topk, m, _ = (config.topk, config.M, config.K)
|
|
hidden_states, hidden_states_scale = RankTensors.make_hidden_states(
|
|
config)
|
|
|
|
num_local_experts, global_num_experts = (config.num_local_experts,
|
|
config.E)
|
|
score = torch.randn((m, global_num_experts),
|
|
device="cuda",
|
|
dtype=dtype)
|
|
topk_weights, topk_ids, _ = fused_topk(hidden_states, score, topk,
|
|
False)
|
|
|
|
# distribute topk_ids evenly
|
|
for mi in range(m):
|
|
topk_ids[mi] = torch.randperm(config.E)[:topk]
|
|
topk_ids = topk_ids.to(device=torch.cuda.current_device())
|
|
|
|
expert_map = None
|
|
if config.world_size > 1 and config.supports_expert_map():
|
|
expert_map = torch.full((global_num_experts, ),
|
|
fill_value=-1,
|
|
dtype=torch.int32)
|
|
s = pgi.rank * num_local_experts
|
|
e = s + num_local_experts
|
|
expert_map[s:e] = torch.tensor(list(range(num_local_experts)))
|
|
expert_map = expert_map.to(device=torch.cuda.current_device(),
|
|
dtype=torch.int32)
|
|
|
|
return RankTensors(
|
|
hidden_states=hidden_states,
|
|
hidden_states_scale=hidden_states_scale,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
expert_map=expert_map,
|
|
quant_config=config.quant_config,
|
|
)
|
|
|
|
|
|
def reference_moe_impl(config: Config, weights: WeightTensors,
|
|
rank_tensors: RankTensors) -> torch.Tensor:
|
|
|
|
if config.quant_dtype == "nvfp4":
|
|
quant_blocksize = 16
|
|
dtype = config.dtype
|
|
|
|
w1_q = weights.w1
|
|
w1_blockscale = weights.w1_scale
|
|
w1_gs = weights.w1_gs
|
|
|
|
w2_q = weights.w2
|
|
w2_blockscale = weights.w2_scale
|
|
w2_gs = weights.w2_gs
|
|
|
|
a_global_scale = ((FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(
|
|
rank_tensors.hidden_states.flatten(), dim=-1)).to(torch.float32)
|
|
|
|
assert w1_gs is not None
|
|
assert w2_gs is not None
|
|
assert w1_blockscale is not None
|
|
assert w2_blockscale is not None
|
|
|
|
assert w1_blockscale.shape[1] % 128 == 0
|
|
assert w1_blockscale.shape[2] % 4 == 0
|
|
assert w2_blockscale.shape[1] % 128 == 0
|
|
assert w2_blockscale.shape[2] % 4 == 0
|
|
|
|
a_fp4, a_scale_interleaved = ops.scaled_fp4_quant(
|
|
rank_tensors.hidden_states, a_global_scale)
|
|
|
|
a = dequantize_nvfp4_to_dtype(a_fp4,
|
|
a_scale_interleaved,
|
|
a_global_scale,
|
|
dtype=dtype,
|
|
device=a_fp4.device,
|
|
block_size=quant_blocksize)
|
|
|
|
e = w1_q.shape[0]
|
|
n = w1_q.shape[1] // 2
|
|
k = w2_q.shape[1]
|
|
|
|
w1 = torch.zeros((e, 2 * n, k), device="cuda", dtype=dtype)
|
|
w2 = torch.zeros((e, k, n), device="cuda", dtype=dtype)
|
|
|
|
for idx in range(0, e):
|
|
w1[idx] = dequantize_nvfp4_to_dtype(w1_q[idx],
|
|
w1_blockscale[idx],
|
|
w1_gs[idx],
|
|
dtype=dtype,
|
|
device=w1_q.device,
|
|
block_size=quant_blocksize)
|
|
w2[idx] = dequantize_nvfp4_to_dtype(w2_q[idx],
|
|
w2_blockscale[idx],
|
|
w2_gs[idx],
|
|
dtype=dtype,
|
|
device=w2_q.device,
|
|
block_size=quant_blocksize)
|
|
a_scale = None
|
|
w1_scale = None
|
|
w2_scale = None
|
|
quant_dtype = None
|
|
per_act_token_quant = False
|
|
block_shape = None
|
|
else:
|
|
a = rank_tensors.hidden_states
|
|
a_scale = rank_tensors.hidden_states_scale
|
|
w1 = weights.w1
|
|
w1_scale = weights.w1_scale
|
|
w2 = weights.w2
|
|
w2_scale = weights.w2_scale
|
|
quant_dtype = config.quant_dtype
|
|
per_act_token_quant = config.is_per_act_token_quant
|
|
block_shape = config.quant_block_shape
|
|
|
|
return torch_experts(a=a,
|
|
w1=w1,
|
|
w2=w2,
|
|
topk_weight=rank_tensors.topk_weights,
|
|
topk_ids=rank_tensors.topk_ids,
|
|
global_num_experts=config.E,
|
|
expert_map=None,
|
|
w1_scale=w1_scale,
|
|
w2_scale=w2_scale,
|
|
a1_scale=a_scale,
|
|
quant_dtype=quant_dtype,
|
|
per_act_token_quant=per_act_token_quant,
|
|
block_shape=block_shape,
|
|
apply_router_weights_on_input=config.topk == 1
|
|
and config.supports_apply_weight_on_input())
|
|
|
|
|
|
def make_modular_kernel(
|
|
config: Config,
|
|
vllm_config: VllmConfig,
|
|
weights: WeightTensors,
|
|
) -> mk.FusedMoEModularKernel:
|
|
|
|
def next_power_of_2(x):
|
|
import math
|
|
if x == 0:
|
|
return 1
|
|
return 2**math.ceil(math.log2(x))
|
|
|
|
# make moe config
|
|
moe_parallel_config: FusedMoEParallelConfig = FusedMoEParallelConfig.make(
|
|
tp_size_=get_tensor_model_parallel_world_size(),
|
|
dp_size_=get_dp_group().world_size,
|
|
vllm_parallel_config=vllm_config.parallel_config,
|
|
)
|
|
|
|
moe = FusedMoEConfig(
|
|
num_experts=config.E,
|
|
experts_per_token=config.topk,
|
|
hidden_dim=config.K,
|
|
num_local_experts=config.num_local_experts,
|
|
moe_parallel_config=moe_parallel_config,
|
|
in_dtype=config.dtype,
|
|
quant_config=config.quant_config,
|
|
max_num_tokens=next_power_of_2(config.M),
|
|
)
|
|
|
|
# make modular kernel
|
|
prepare_finalize = make_prepare_finalize(config.prepare_finalize_type,
|
|
config.all2all_backend(), moe)
|
|
|
|
fused_experts = make_fused_experts(
|
|
config.fused_experts_type,
|
|
moe,
|
|
prepare_finalize.num_dispatchers(),
|
|
weights.w1_gs,
|
|
weights.w2_gs,
|
|
)
|
|
|
|
modular_kernel = mk.FusedMoEModularKernel(
|
|
prepare_finalize=prepare_finalize, fused_experts=fused_experts)
|
|
|
|
return modular_kernel
|
|
|
|
|
|
def run_modular_kernel(
|
|
pgi: ProcessGroupInfo,
|
|
vllm_config: VllmConfig,
|
|
config: Config,
|
|
weights: WeightTensors,
|
|
rank_tensors: RankTensors,
|
|
) -> torch.Tensor:
|
|
assert isinstance(config.Ms, int)
|
|
assert isinstance(config.topks, int)
|
|
|
|
# weights for rank
|
|
rank_weights = weights.slice_weights(pgi.rank, config.num_local_experts)
|
|
|
|
mk = make_modular_kernel(config, vllm_config, weights)
|
|
|
|
mk_kwargs = {
|
|
"hidden_states":
|
|
rank_tensors.hidden_states.clone(
|
|
), # impls might update the tensor in place
|
|
"w1":
|
|
rank_weights.w1,
|
|
"w2":
|
|
rank_weights.w2,
|
|
"topk_weights":
|
|
rank_tensors.topk_weights,
|
|
"topk_ids":
|
|
rank_tensors.topk_ids.to(mk.prepare_finalize.topk_indices_dtype()),
|
|
"expert_map":
|
|
rank_tensors.expert_map,
|
|
"w1_scale":
|
|
rank_weights.w1_scale,
|
|
"w2_scale":
|
|
rank_weights.w2_scale,
|
|
"a1_scale":
|
|
rank_tensors.hidden_states_scale,
|
|
"global_num_experts":
|
|
config.E,
|
|
"apply_router_weight_on_input":
|
|
config.topk == 1 and config.supports_apply_weight_on_input(),
|
|
}
|
|
|
|
num_tokens = rank_tensors.hidden_states.shape[0]
|
|
num_tokens_across_dp = torch.tensor([num_tokens] * config.world_size,
|
|
device="cuda",
|
|
dtype=torch.int)
|
|
|
|
with set_forward_context(
|
|
None,
|
|
vllm_config,
|
|
num_tokens=num_tokens,
|
|
num_tokens_across_dp=num_tokens_across_dp,
|
|
):
|
|
out = mk.forward(**mk_kwargs)
|
|
|
|
return out
|