vllm/vllm/attention/backends/flash_attn.py
2024-07-08 17:12:15 +00:00

375 lines
15 KiB
Python

"""Attention layer with FlashAttention."""
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
from vllm_flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from vllm import _custom_ops as ops
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata, AttentionType)
class FlashAttentionBackend(AttentionBackend):
@staticmethod
def get_supported_head_sizes() -> List[int]:
return [32, 64, 96, 128, 160, 192, 224, 256]
@staticmethod
def get_name() -> str:
return "flash-attn"
@staticmethod
def get_impl_cls() -> Type["FlashAttentionImpl"]:
return FlashAttentionImpl
@staticmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
return FlashAttentionMetadata
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
if block_size % 16 != 0:
raise ValueError("Block size must be a multiple of 16.")
return (2, num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
src_key_cache = src_kv_cache[0]
dst_key_cache = dst_kv_cache[0]
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
src_value_cache = src_kv_cache[1]
dst_value_cache = dst_kv_cache[1]
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
key_caches = [kv_cache[0] for kv_cache in kv_caches]
value_caches = [kv_cache[1] for kv_cache in kv_caches]
ops.copy_blocks(key_caches, value_caches, src_to_dists)
@dataclass
class FlashAttentionMetadata(AttentionMetadata):
"""Metadata for FlashAttentionBackend.
NOTE: Any python object stored here is not updated when it is
cuda-graph replayed. If you have values that need to be changed
dynamically, it should be stored in tensor. The tensor has to be
updated from `CUDAGraphRunner.forward` API.
"""
# (batch_size,). The sequence length per sequence. Sequence length means
# the computed tokens + new tokens None if it is a decoding.
seq_lens: Optional[List[int]]
# seq_lens stored as a tensor.
seq_lens_tensor: Optional[torch.Tensor]
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
# Maximum query length in the batch. None for decoding.
max_query_len: Optional[int]
# Maximum sequence length among prefill batch. 0 if there are decoding
# requests only.
max_prefill_seq_len: int
# Maximum sequence length among decode batch. 0 if there are prefill
# requests only.
max_decode_seq_len: int
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
# the batch, used to index into subquery. E.g., if the subquery length
# is [4, 6], it is [0, 4, 10].
query_start_loc: Optional[torch.Tensor]
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
# the batch, used to index into sequence. E.g., if the sequence length is
# [4, 6], it is [0, 4, 10].
seq_start_loc: Optional[torch.Tensor]
# (batch_size,) A tensor of context lengths (tokens that are computed
# so far).
context_lens_tensor: Optional[torch.Tensor]
# (batch_size, max_blocks_per_seq).
# Block addresses per sequence. (Seq id -> list of physical block)
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
# in the kv cache. Each block can contain up to block_size tokens.
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
# captured.
block_tables: Optional[torch.Tensor]
# Whether or not if cuda graph is enabled.
# Cuda-graph is currently enabled for decoding only.
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
use_cuda_graph: bool
_cached_prefill_metadata: Optional["FlashAttentionMetadata"] = None
_cached_decode_metadata: Optional["FlashAttentionMetadata"] = None
@property
def prefill_metadata(self) -> Optional["FlashAttentionMetadata"]:
if self.num_prefills == 0:
return None
if self._cached_prefill_metadata is not None:
return self._cached_prefill_metadata
assert self.seq_lens is not None
assert self.seq_lens_tensor is not None
assert self.query_start_loc is not None
assert self.context_lens_tensor is not None
assert self.block_tables is not None
assert self.seq_start_loc is not None
self._cached_prefill_metadata = FlashAttentionMetadata(
num_prefills=self.num_prefills,
num_prefill_tokens=self.num_prefill_tokens,
num_decode_tokens=0,
slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
seq_lens=self.seq_lens[:self.num_prefills],
seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
max_query_len=self.max_query_len,
max_prefill_seq_len=self.max_prefill_seq_len,
max_decode_seq_len=0,
query_start_loc=self.query_start_loc[:self.num_prefills + 1],
seq_start_loc=self.seq_start_loc[:self.num_prefills + 1],
context_lens_tensor=self.context_lens_tensor[:self.num_prefills],
block_tables=self.block_tables[:self.num_prefills],
use_cuda_graph=False,
)
return self._cached_prefill_metadata
@property
def decode_metadata(self) -> Optional["FlashAttentionMetadata"]:
if self.num_decode_tokens == 0:
return None
if self._cached_decode_metadata is not None:
return self._cached_decode_metadata
assert self.block_tables is not None
assert self.seq_lens_tensor is not None
self._cached_decode_metadata = FlashAttentionMetadata(
num_prefills=0,
num_prefill_tokens=0,
num_decode_tokens=self.num_decode_tokens,
slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
seq_lens=None,
seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
max_query_len=None,
max_prefill_seq_len=0,
max_decode_seq_len=self.max_decode_seq_len,
query_start_loc=None,
seq_start_loc=None,
context_lens_tensor=None,
block_tables=self.block_tables[self.num_prefills:],
use_cuda_graph=self.use_cuda_graph,
)
return self._cached_decode_metadata
class FlashAttentionImpl(AttentionImpl):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prefill_tokens ----------------->|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
Otherwise, the layout is as follows:
|<----------------- num_decode_tokens ------------------>|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.
The prompts might have different lengths, while the generation tokens
always have length 1.
If chunked prefill is enabled, prefill tokens and decode tokens can be
batched together in a flattened 1D query.
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
padding between prefill and decode tokens.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
) -> None:
assert blocksparse_params is None, ValueError(
"FlashAttention does not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
self.sliding_window = ((sliding_window, sliding_window)
if sliding_window is not None else (-1, -1))
self.kv_cache_dtype = kv_cache_dtype
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if sliding_window is not None:
# NOTE(woosuk): flash-attn's sliding window does not work with
# paged KV cache.
raise ValueError(
"Sliding window is not supported in FlashAttention.")
support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
if head_size not in support_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by FlashAttention. "
f"Supported head sizes are: {support_head_sizes}.")
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: FlashAttentionMetadata,
kv_scale: float = 1.0,
attn_type: AttentionType = AttentionType.DECODER,
) -> torch.Tensor:
"""Forward pass with FlashAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"FlashAttentionImpl")
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
assert kv_scale == 1.0, "kv_scale is not supported in FlashAttention."
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if kv_cache is not None:
key_cache = kv_cache[0]
value_cache = kv_cache[1]
# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory profiling run.
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping.flatten(),
self.kv_cache_dtype,
)
num_prefill_tokens = attn_metadata.num_prefill_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
output = torch.empty_like(query)
# Query for decode. KV is not needed because it is already cached.
decode_query = query[num_prefill_tokens:]
# QKV for prefill.
query = query[:num_prefill_tokens]
key = key[:num_prefill_tokens]
value = value[:num_prefill_tokens]
assert query.shape[0] == num_prefill_tokens
assert decode_query.shape[0] == num_decode_tokens
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
if (kv_cache is None or prefill_meta.block_tables is None
or prefill_meta.block_tables.numel() == 0):
# normal attention
# When block_tables are not filled, it means q and k are the
# prompt, and they have the same length.
out = flash_attn_varlen_func(
q=query,
k=key,
v=value,
cu_seqlens_q=prefill_meta.seq_start_loc,
cu_seqlens_k=prefill_meta.seq_start_loc,
max_seqlen_q=prefill_meta.max_prefill_seq_len,
max_seqlen_k=prefill_meta.max_prefill_seq_len,
softmax_scale=self.scale,
causal=True,
window_size=self.sliding_window,
alibi_slopes=self.alibi_slopes,
)
assert output[:num_prefill_tokens].shape == out.shape
output[:num_prefill_tokens] = out
else:
# prefix-enabled attention
assert prefill_meta.seq_lens is not None
max_seq_len = max(prefill_meta.seq_lens)
output[:num_prefill_tokens] = flash_attn_varlen_func(
q=query,
k=key_cache,
v=value_cache,
cu_seqlens_q=prefill_meta.query_start_loc,
max_seqlen_q=prefill_meta.max_query_len,
cu_seqlens_k=prefill_meta.seq_start_loc,
max_seqlen_k=max_seq_len,
softmax_scale=self.scale,
causal=True,
alibi_slopes=self.alibi_slopes,
block_table=prefill_meta.block_tables,
)
if decode_meta := attn_metadata.decode_metadata:
# Decoding run.
output[num_prefill_tokens:] = flash_attn_with_kvcache(
decode_query.unsqueeze(1),
key_cache,
value_cache,
block_table=decode_meta.block_tables,
cache_seqlens=decode_meta.seq_lens_tensor,
softmax_scale=self.scale,
causal=True,
alibi_slopes=self.alibi_slopes,
).squeeze(1)
# Reshape the output tensor.
return output.view(num_tokens, hidden_size)