mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:05:01 +08:00
375 lines
15 KiB
Python
375 lines
15 KiB
Python
"""Attention layer with FlashAttention."""
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
from vllm_flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionMetadata, AttentionType)
|
|
|
|
|
|
class FlashAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_supported_head_sizes() -> List[int]:
|
|
return [32, 64, 96, 128, 160, 192, 224, 256]
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "flash-attn"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["FlashAttentionImpl"]:
|
|
return FlashAttentionImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
return FlashAttentionMetadata
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
if block_size % 16 != 0:
|
|
raise ValueError("Block size must be a multiple of 16.")
|
|
return (2, num_blocks, block_size, num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
src_key_cache = src_kv_cache[0]
|
|
dst_key_cache = dst_kv_cache[0]
|
|
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
|
|
|
|
src_value_cache = src_kv_cache[1]
|
|
dst_value_cache = dst_kv_cache[1]
|
|
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: torch.Tensor,
|
|
) -> None:
|
|
key_caches = [kv_cache[0] for kv_cache in kv_caches]
|
|
value_caches = [kv_cache[1] for kv_cache in kv_caches]
|
|
ops.copy_blocks(key_caches, value_caches, src_to_dists)
|
|
|
|
|
|
@dataclass
|
|
class FlashAttentionMetadata(AttentionMetadata):
|
|
"""Metadata for FlashAttentionBackend.
|
|
|
|
NOTE: Any python object stored here is not updated when it is
|
|
cuda-graph replayed. If you have values that need to be changed
|
|
dynamically, it should be stored in tensor. The tensor has to be
|
|
updated from `CUDAGraphRunner.forward` API.
|
|
"""
|
|
# (batch_size,). The sequence length per sequence. Sequence length means
|
|
# the computed tokens + new tokens None if it is a decoding.
|
|
seq_lens: Optional[List[int]]
|
|
# seq_lens stored as a tensor.
|
|
seq_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
# Maximum query length in the batch. None for decoding.
|
|
max_query_len: Optional[int]
|
|
# Maximum sequence length among prefill batch. 0 if there are decoding
|
|
# requests only.
|
|
max_prefill_seq_len: int
|
|
# Maximum sequence length among decode batch. 0 if there are prefill
|
|
# requests only.
|
|
max_decode_seq_len: int
|
|
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
|
# the batch, used to index into subquery. E.g., if the subquery length
|
|
# is [4, 6], it is [0, 4, 10].
|
|
query_start_loc: Optional[torch.Tensor]
|
|
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
|
# the batch, used to index into sequence. E.g., if the sequence length is
|
|
# [4, 6], it is [0, 4, 10].
|
|
seq_start_loc: Optional[torch.Tensor]
|
|
# (batch_size,) A tensor of context lengths (tokens that are computed
|
|
# so far).
|
|
context_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# (batch_size, max_blocks_per_seq).
|
|
# Block addresses per sequence. (Seq id -> list of physical block)
|
|
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
|
|
# in the kv cache. Each block can contain up to block_size tokens.
|
|
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
|
|
# captured.
|
|
block_tables: Optional[torch.Tensor]
|
|
|
|
# Whether or not if cuda graph is enabled.
|
|
# Cuda-graph is currently enabled for decoding only.
|
|
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
|
use_cuda_graph: bool
|
|
|
|
_cached_prefill_metadata: Optional["FlashAttentionMetadata"] = None
|
|
_cached_decode_metadata: Optional["FlashAttentionMetadata"] = None
|
|
|
|
@property
|
|
def prefill_metadata(self) -> Optional["FlashAttentionMetadata"]:
|
|
if self.num_prefills == 0:
|
|
return None
|
|
|
|
if self._cached_prefill_metadata is not None:
|
|
return self._cached_prefill_metadata
|
|
|
|
assert self.seq_lens is not None
|
|
assert self.seq_lens_tensor is not None
|
|
assert self.query_start_loc is not None
|
|
assert self.context_lens_tensor is not None
|
|
assert self.block_tables is not None
|
|
assert self.seq_start_loc is not None
|
|
|
|
self._cached_prefill_metadata = FlashAttentionMetadata(
|
|
num_prefills=self.num_prefills,
|
|
num_prefill_tokens=self.num_prefill_tokens,
|
|
num_decode_tokens=0,
|
|
slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
|
|
seq_lens=self.seq_lens[:self.num_prefills],
|
|
seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
|
|
max_query_len=self.max_query_len,
|
|
max_prefill_seq_len=self.max_prefill_seq_len,
|
|
max_decode_seq_len=0,
|
|
query_start_loc=self.query_start_loc[:self.num_prefills + 1],
|
|
seq_start_loc=self.seq_start_loc[:self.num_prefills + 1],
|
|
context_lens_tensor=self.context_lens_tensor[:self.num_prefills],
|
|
block_tables=self.block_tables[:self.num_prefills],
|
|
use_cuda_graph=False,
|
|
)
|
|
return self._cached_prefill_metadata
|
|
|
|
@property
|
|
def decode_metadata(self) -> Optional["FlashAttentionMetadata"]:
|
|
if self.num_decode_tokens == 0:
|
|
return None
|
|
|
|
if self._cached_decode_metadata is not None:
|
|
return self._cached_decode_metadata
|
|
assert self.block_tables is not None
|
|
assert self.seq_lens_tensor is not None
|
|
|
|
self._cached_decode_metadata = FlashAttentionMetadata(
|
|
num_prefills=0,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=self.num_decode_tokens,
|
|
slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
|
|
seq_lens=None,
|
|
seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
|
|
max_query_len=None,
|
|
max_prefill_seq_len=0,
|
|
max_decode_seq_len=self.max_decode_seq_len,
|
|
query_start_loc=None,
|
|
seq_start_loc=None,
|
|
context_lens_tensor=None,
|
|
block_tables=self.block_tables[self.num_prefills:],
|
|
use_cuda_graph=self.use_cuda_graph,
|
|
)
|
|
return self._cached_decode_metadata
|
|
|
|
|
|
class FlashAttentionImpl(AttentionImpl):
|
|
"""
|
|
If the input tensors contain prompt tokens, the layout is as follows:
|
|
|<--------------- num_prefill_tokens ----------------->|
|
|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
|
|
|
|
Otherwise, the layout is as follows:
|
|
|<----------------- num_decode_tokens ------------------>|
|
|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
|
|
|
|
Generation tokens can contain padding when cuda-graph is used.
|
|
Currently, prompt tokens don't contain any padding.
|
|
|
|
The prompts might have different lengths, while the generation tokens
|
|
always have length 1.
|
|
|
|
If chunked prefill is enabled, prefill tokens and decode tokens can be
|
|
batched together in a flattened 1D query.
|
|
|
|
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|
|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
|
|
|
|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
|
|
padding between prefill and decode tokens.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
) -> None:
|
|
assert blocksparse_params is None, ValueError(
|
|
"FlashAttention does not support block-sparse attention.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
self.sliding_window = ((sliding_window, sliding_window)
|
|
if sliding_window is not None else (-1, -1))
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
|
|
if sliding_window is not None:
|
|
# NOTE(woosuk): flash-attn's sliding window does not work with
|
|
# paged KV cache.
|
|
raise ValueError(
|
|
"Sliding window is not supported in FlashAttention.")
|
|
|
|
support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
|
|
if head_size not in support_head_sizes:
|
|
raise ValueError(
|
|
f"Head size {head_size} is not supported by FlashAttention. "
|
|
f"Supported head sizes are: {support_head_sizes}.")
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: FlashAttentionMetadata,
|
|
kv_scale: float = 1.0,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with FlashAttention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"FlashAttentionImpl")
|
|
|
|
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
|
|
assert kv_scale == 1.0, "kv_scale is not supported in FlashAttention."
|
|
|
|
num_tokens, hidden_size = query.shape
|
|
# Reshape the query, key, and value tensors.
|
|
query = query.view(-1, self.num_heads, self.head_size)
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
|
|
if kv_cache is not None:
|
|
key_cache = kv_cache[0]
|
|
value_cache = kv_cache[1]
|
|
|
|
# Reshape the input keys and values and store them in the cache.
|
|
# If kv_cache is not provided, the new key and value tensors are
|
|
# not cached. This happens during the initial memory profiling run.
|
|
ops.reshape_and_cache_flash(
|
|
key,
|
|
value,
|
|
key_cache,
|
|
value_cache,
|
|
attn_metadata.slot_mapping.flatten(),
|
|
self.kv_cache_dtype,
|
|
)
|
|
|
|
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
|
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
|
|
output = torch.empty_like(query)
|
|
# Query for decode. KV is not needed because it is already cached.
|
|
decode_query = query[num_prefill_tokens:]
|
|
# QKV for prefill.
|
|
query = query[:num_prefill_tokens]
|
|
key = key[:num_prefill_tokens]
|
|
value = value[:num_prefill_tokens]
|
|
|
|
assert query.shape[0] == num_prefill_tokens
|
|
assert decode_query.shape[0] == num_decode_tokens
|
|
|
|
if prefill_meta := attn_metadata.prefill_metadata:
|
|
# Prompt run.
|
|
if (kv_cache is None or prefill_meta.block_tables is None
|
|
or prefill_meta.block_tables.numel() == 0):
|
|
# normal attention
|
|
# When block_tables are not filled, it means q and k are the
|
|
# prompt, and they have the same length.
|
|
out = flash_attn_varlen_func(
|
|
q=query,
|
|
k=key,
|
|
v=value,
|
|
cu_seqlens_q=prefill_meta.seq_start_loc,
|
|
cu_seqlens_k=prefill_meta.seq_start_loc,
|
|
max_seqlen_q=prefill_meta.max_prefill_seq_len,
|
|
max_seqlen_k=prefill_meta.max_prefill_seq_len,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
window_size=self.sliding_window,
|
|
alibi_slopes=self.alibi_slopes,
|
|
)
|
|
assert output[:num_prefill_tokens].shape == out.shape
|
|
output[:num_prefill_tokens] = out
|
|
else:
|
|
# prefix-enabled attention
|
|
assert prefill_meta.seq_lens is not None
|
|
max_seq_len = max(prefill_meta.seq_lens)
|
|
output[:num_prefill_tokens] = flash_attn_varlen_func(
|
|
q=query,
|
|
k=key_cache,
|
|
v=value_cache,
|
|
cu_seqlens_q=prefill_meta.query_start_loc,
|
|
max_seqlen_q=prefill_meta.max_query_len,
|
|
cu_seqlens_k=prefill_meta.seq_start_loc,
|
|
max_seqlen_k=max_seq_len,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
alibi_slopes=self.alibi_slopes,
|
|
block_table=prefill_meta.block_tables,
|
|
)
|
|
|
|
if decode_meta := attn_metadata.decode_metadata:
|
|
# Decoding run.
|
|
output[num_prefill_tokens:] = flash_attn_with_kvcache(
|
|
decode_query.unsqueeze(1),
|
|
key_cache,
|
|
value_cache,
|
|
block_table=decode_meta.block_tables,
|
|
cache_seqlens=decode_meta.seq_lens_tensor,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
alibi_slopes=self.alibi_slopes,
|
|
).squeeze(1)
|
|
|
|
# Reshape the output tensor.
|
|
return output.view(num_tokens, hidden_size)
|