vllm/vllm/inputs/parse.py
Cyrus Leung 247181536f
[Misc] Replace is_encoder_decoder_inputs with split_enc_dec_inputs (#15620)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-27 17:36:32 +00:00

122 lines
3.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from collections.abc import Sequence
from typing import Literal, Optional, TypedDict, Union, cast, overload
from typing_extensions import TypeIs
from vllm.utils import is_list_of
from .data import (ExplicitEncoderDecoderPrompt, ProcessorInputs, PromptType,
SingletonInputs, SingletonPrompt, TextPrompt, TokensPrompt)
class ParsedText(TypedDict):
content: str
is_tokens: Literal[False]
class ParsedTokens(TypedDict):
content: list[int]
is_tokens: Literal[True]
@overload
def parse_and_batch_prompt(
prompt: Union[str, list[str]]) -> Sequence[ParsedText]:
...
@overload
def parse_and_batch_prompt(
prompt: Union[list[int], list[list[int]]]) -> Sequence[ParsedTokens]:
...
def parse_and_batch_prompt(
prompt: Union[str, list[str], list[int], list[list[int]]],
) -> Union[Sequence[ParsedText], Sequence[ParsedTokens]]:
if isinstance(prompt, str):
# case 1: a string
return [ParsedText(content=prompt, is_tokens=False)]
if isinstance(prompt, list):
if len(prompt) == 0:
raise ValueError("please provide at least one prompt")
if is_list_of(prompt, str):
# case 2: array of strings
prompt = cast(list[str], prompt)
return [
ParsedText(content=elem, is_tokens=False) for elem in prompt
]
if is_list_of(prompt, int):
# case 3: array of tokens
prompt = cast(list[int], prompt)
return [ParsedTokens(content=prompt, is_tokens=True)]
if is_list_of(prompt, list):
prompt = cast(list[list[int]], prompt)
if len(prompt[0]) == 0:
raise ValueError("please provide at least one prompt")
if is_list_of(prompt[0], int):
# case 4: array of token arrays
return [
ParsedTokens(content=elem, is_tokens=True)
for elem in prompt
]
raise TypeError("prompt must be a string, array of strings, "
"array of tokens, or array of token arrays")
class ParsedStrPrompt(TypedDict):
type: Literal["str"]
content: str
class ParsedTextPrompt(TypedDict):
type: Literal["text"]
content: TextPrompt
class ParsedTokensPrompt(TypedDict):
type: Literal["tokens"]
content: TokensPrompt
def parse_singleton_prompt(
prompt: SingletonPrompt,
) -> Union[ParsedStrPrompt, ParsedTextPrompt, ParsedTokensPrompt]:
if isinstance(prompt, str):
return ParsedStrPrompt(type="str", content=prompt)
elif isinstance(prompt, dict):
if "prompt_token_ids" in prompt:
return ParsedTokensPrompt(type="tokens",
content=prompt) # type: ignore
elif "prompt" in prompt:
return ParsedTextPrompt(type="text", content=prompt)
raise TypeError("inputs must be a string, TextPrompt, or TokensPrompt")
def is_token_prompt(prompt: PromptType) -> TypeIs[TokensPrompt]:
return isinstance(prompt, dict) and "prompt_token_ids" in prompt
def is_explicit_encoder_decoder_prompt(
prompt: PromptType) -> TypeIs[ExplicitEncoderDecoderPrompt]:
return isinstance(prompt, dict) and "encoder_prompt" in prompt
def split_enc_dec_inputs(
inputs: ProcessorInputs,
) -> tuple[Optional[SingletonInputs], SingletonInputs]:
if "encoder" in inputs and "decoder" in inputs:
# NOTE: This passes pyright but not mypy
return (
inputs["encoder"], # type: ignore[typeddict-item]
inputs["decoder"], # type: ignore[typeddict-item]
)
return None, inputs