mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-09 19:43:14 +08:00
122 lines
3.6 KiB
Python
122 lines
3.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
from collections.abc import Sequence
|
|
from typing import Literal, Optional, TypedDict, Union, cast, overload
|
|
|
|
from typing_extensions import TypeIs
|
|
|
|
from vllm.utils import is_list_of
|
|
|
|
from .data import (ExplicitEncoderDecoderPrompt, ProcessorInputs, PromptType,
|
|
SingletonInputs, SingletonPrompt, TextPrompt, TokensPrompt)
|
|
|
|
|
|
class ParsedText(TypedDict):
|
|
content: str
|
|
is_tokens: Literal[False]
|
|
|
|
|
|
class ParsedTokens(TypedDict):
|
|
content: list[int]
|
|
is_tokens: Literal[True]
|
|
|
|
|
|
@overload
|
|
def parse_and_batch_prompt(
|
|
prompt: Union[str, list[str]]) -> Sequence[ParsedText]:
|
|
...
|
|
|
|
|
|
@overload
|
|
def parse_and_batch_prompt(
|
|
prompt: Union[list[int], list[list[int]]]) -> Sequence[ParsedTokens]:
|
|
...
|
|
|
|
|
|
def parse_and_batch_prompt(
|
|
prompt: Union[str, list[str], list[int], list[list[int]]],
|
|
) -> Union[Sequence[ParsedText], Sequence[ParsedTokens]]:
|
|
if isinstance(prompt, str):
|
|
# case 1: a string
|
|
return [ParsedText(content=prompt, is_tokens=False)]
|
|
|
|
if isinstance(prompt, list):
|
|
if len(prompt) == 0:
|
|
raise ValueError("please provide at least one prompt")
|
|
|
|
if is_list_of(prompt, str):
|
|
# case 2: array of strings
|
|
prompt = cast(list[str], prompt)
|
|
return [
|
|
ParsedText(content=elem, is_tokens=False) for elem in prompt
|
|
]
|
|
if is_list_of(prompt, int):
|
|
# case 3: array of tokens
|
|
prompt = cast(list[int], prompt)
|
|
return [ParsedTokens(content=prompt, is_tokens=True)]
|
|
if is_list_of(prompt, list):
|
|
prompt = cast(list[list[int]], prompt)
|
|
if len(prompt[0]) == 0:
|
|
raise ValueError("please provide at least one prompt")
|
|
|
|
if is_list_of(prompt[0], int):
|
|
# case 4: array of token arrays
|
|
return [
|
|
ParsedTokens(content=elem, is_tokens=True)
|
|
for elem in prompt
|
|
]
|
|
|
|
raise TypeError("prompt must be a string, array of strings, "
|
|
"array of tokens, or array of token arrays")
|
|
|
|
|
|
class ParsedStrPrompt(TypedDict):
|
|
type: Literal["str"]
|
|
content: str
|
|
|
|
|
|
class ParsedTextPrompt(TypedDict):
|
|
type: Literal["text"]
|
|
content: TextPrompt
|
|
|
|
|
|
class ParsedTokensPrompt(TypedDict):
|
|
type: Literal["tokens"]
|
|
content: TokensPrompt
|
|
|
|
|
|
def parse_singleton_prompt(
|
|
prompt: SingletonPrompt,
|
|
) -> Union[ParsedStrPrompt, ParsedTextPrompt, ParsedTokensPrompt]:
|
|
if isinstance(prompt, str):
|
|
return ParsedStrPrompt(type="str", content=prompt)
|
|
elif isinstance(prompt, dict):
|
|
if "prompt_token_ids" in prompt:
|
|
return ParsedTokensPrompt(type="tokens",
|
|
content=prompt) # type: ignore
|
|
elif "prompt" in prompt:
|
|
return ParsedTextPrompt(type="text", content=prompt)
|
|
|
|
raise TypeError("inputs must be a string, TextPrompt, or TokensPrompt")
|
|
|
|
|
|
def is_token_prompt(prompt: PromptType) -> TypeIs[TokensPrompt]:
|
|
return isinstance(prompt, dict) and "prompt_token_ids" in prompt
|
|
|
|
|
|
def is_explicit_encoder_decoder_prompt(
|
|
prompt: PromptType) -> TypeIs[ExplicitEncoderDecoderPrompt]:
|
|
return isinstance(prompt, dict) and "encoder_prompt" in prompt
|
|
|
|
|
|
def split_enc_dec_inputs(
|
|
inputs: ProcessorInputs,
|
|
) -> tuple[Optional[SingletonInputs], SingletonInputs]:
|
|
if "encoder" in inputs and "decoder" in inputs:
|
|
# NOTE: This passes pyright but not mypy
|
|
return (
|
|
inputs["encoder"], # type: ignore[typeddict-item]
|
|
inputs["decoder"], # type: ignore[typeddict-item]
|
|
)
|
|
|
|
return None, inputs
|