mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-12 01:24:28 +08:00
176 lines
5.8 KiB
Python
176 lines
5.8 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
import torch
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
|
set_weight_attrs)
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
|
|
|
|
class BitsAndBytesConfig(QuantizationConfig):
|
|
"""Config class for BitsAndBytes Quantization.
|
|
|
|
Reference: https://arxiv.org/abs/2305.14314
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
adapter_name_or_path: str,
|
|
target_modules: List[str],
|
|
) -> None:
|
|
|
|
self.adapter_name_or_path = adapter_name_or_path
|
|
self.target_modules = target_modules
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"BitsAndBytesConfig(adapter_name_or_path={self.adapter_name_or_path}"
|
|
)
|
|
|
|
@classmethod
|
|
def get_name(self) -> str:
|
|
return "bitsandbytes"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(self) -> List[torch.dtype]:
|
|
return [torch.float32, torch.float16, torch.bfloat16]
|
|
|
|
@classmethod
|
|
def get_min_capability(self) -> int:
|
|
return 70
|
|
|
|
@staticmethod
|
|
def get_config_filenames() -> List[str]:
|
|
return [
|
|
"adapter_config.json",
|
|
]
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "BitsAndBytesConfig":
|
|
adapter_name = cls.get_from_keys(config, ["adapter_name_or_path"])
|
|
default_target_modules = [
|
|
"gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj",
|
|
"o_proj"
|
|
]
|
|
if adapter_name == "":
|
|
target_modules = default_target_modules
|
|
else:
|
|
target_modules = cls.get_from_keys(config, ["target_modules"])
|
|
return cls(adapter_name, target_modules)
|
|
|
|
def get_quant_method(
|
|
self,
|
|
layer: torch.nn.Module) -> Optional["BitsAndBytesLinearMethod"]:
|
|
if isinstance(layer, LinearBase):
|
|
return BitsAndBytesLinearMethod(self)
|
|
return None
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return ["gelu", "gelu_fast", "gelu_new", "gelu_pytorch_tanh"]
|
|
|
|
|
|
class BitsAndBytesLinearMethod(LinearMethodBase):
|
|
"""Linear method for BitsAndBytes.
|
|
|
|
Args:
|
|
quant_config: The BitsAndBytes quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: BitsAndBytesConfig):
|
|
try:
|
|
import bitsandbytes
|
|
if bitsandbytes.__version__ < "0.42.0":
|
|
raise ImportError("bitsandbytes version is wrong. Please "
|
|
"install bitsandbytes>=0.42.0.")
|
|
except ImportError as err:
|
|
raise ImportError("Please install bitsandbytes>=0.42.0 via "
|
|
"`pip install bitsandbytes>=0.42.0` to use "
|
|
"bitsandbytes quantizer.") from err
|
|
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int], input_size: int,
|
|
output_size: int, params_dtype: torch.dtype,
|
|
**extra_weight_attrs):
|
|
quant_ratio = 0
|
|
if params_dtype.is_floating_point:
|
|
quant_ratio = torch.finfo(params_dtype).bits // torch.iinfo(
|
|
torch.uint8).bits
|
|
else:
|
|
quant_ratio = torch.iinfo(params_dtype).bits // torch.iinfo(
|
|
torch.uint8).bits
|
|
|
|
if input_size_per_partition * sum(
|
|
output_partition_sizes) % quant_ratio != 0:
|
|
raise ValueError(
|
|
"The input size is not aligned with the quantized "
|
|
"weight shape. ")
|
|
qweight = Parameter(
|
|
torch.empty(
|
|
input_size_per_partition * sum(output_partition_sizes) //
|
|
quant_ratio,
|
|
1,
|
|
dtype=torch.uint8,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
|
|
set_weight_attrs(
|
|
qweight,
|
|
{
|
|
"input_dim": 0,
|
|
# In bitsandbytes, a tensor of shape [n,m] is quantized to
|
|
#[n*m/pack_ratio, 1],so the output_dim is 0
|
|
"output_dim": 0,
|
|
"pack_factor": quant_ratio,
|
|
"use_bitsandbytes": True,
|
|
})
|
|
layer.register_parameter("qweight", qweight)
|
|
set_weight_attrs(qweight, extra_weight_attrs)
|
|
|
|
def apply(self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
|
# only load the bitsandbytes module when needed
|
|
from bitsandbytes import matmul_4bit
|
|
|
|
original_type = x.dtype
|
|
bf_x = x.to(torch.bfloat16)
|
|
|
|
qweight = layer.qweight
|
|
quant_states = qweight.bnb_quant_state
|
|
offsets = qweight.bnb_shard_offsets
|
|
|
|
out_dim_0 = x.shape[0]
|
|
out_dim_1 = sum(
|
|
[quant_state[1].shape[0] for quant_state in quant_states.items()])
|
|
out = torch.empty(out_dim_0,
|
|
out_dim_1,
|
|
dtype=torch.bfloat16,
|
|
device=x.device)
|
|
|
|
current_index = 0
|
|
for i in range(len(quant_states)):
|
|
output_size = quant_states[i].shape[0]
|
|
# It is more efficient to use out kwarg like
|
|
# matmul_4bit(..., out = ...). Infeasible now due to the bug
|
|
# https://github.com/TimDettmers/bitsandbytes/issues/1235.
|
|
# Need to change after the bug is fixed.
|
|
out[:, current_index:current_index + output_size] = matmul_4bit(
|
|
bf_x, qweight[offsets[i]:offsets[i + 1]].t(), quant_states[i])
|
|
|
|
current_index += output_size
|
|
|
|
out = out.to(original_type)
|
|
|
|
if bias is not None:
|
|
out += bias
|
|
|
|
return out
|