176 lines
5.8 KiB
Python

from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
class BitsAndBytesConfig(QuantizationConfig):
"""Config class for BitsAndBytes Quantization.
Reference: https://arxiv.org/abs/2305.14314
"""
def __init__(
self,
adapter_name_or_path: str,
target_modules: List[str],
) -> None:
self.adapter_name_or_path = adapter_name_or_path
self.target_modules = target_modules
def __repr__(self) -> str:
return (
f"BitsAndBytesConfig(adapter_name_or_path={self.adapter_name_or_path}"
)
@classmethod
def get_name(self) -> str:
return "bitsandbytes"
@classmethod
def get_supported_act_dtypes(self) -> List[torch.dtype]:
return [torch.float32, torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(self) -> int:
return 70
@staticmethod
def get_config_filenames() -> List[str]:
return [
"adapter_config.json",
]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "BitsAndBytesConfig":
adapter_name = cls.get_from_keys(config, ["adapter_name_or_path"])
default_target_modules = [
"gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj",
"o_proj"
]
if adapter_name == "":
target_modules = default_target_modules
else:
target_modules = cls.get_from_keys(config, ["target_modules"])
return cls(adapter_name, target_modules)
def get_quant_method(
self,
layer: torch.nn.Module) -> Optional["BitsAndBytesLinearMethod"]:
if isinstance(layer, LinearBase):
return BitsAndBytesLinearMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return ["gelu", "gelu_fast", "gelu_new", "gelu_pytorch_tanh"]
class BitsAndBytesLinearMethod(LinearMethodBase):
"""Linear method for BitsAndBytes.
Args:
quant_config: The BitsAndBytes quantization config.
"""
def __init__(self, quant_config: BitsAndBytesConfig):
try:
import bitsandbytes
if bitsandbytes.__version__ < "0.42.0":
raise ImportError("bitsandbytes version is wrong. Please "
"install bitsandbytes>=0.42.0.")
except ImportError as err:
raise ImportError("Please install bitsandbytes>=0.42.0 via "
"`pip install bitsandbytes>=0.42.0` to use "
"bitsandbytes quantizer.") from err
self.quant_config = quant_config
def create_weights(self, layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
quant_ratio = 0
if params_dtype.is_floating_point:
quant_ratio = torch.finfo(params_dtype).bits // torch.iinfo(
torch.uint8).bits
else:
quant_ratio = torch.iinfo(params_dtype).bits // torch.iinfo(
torch.uint8).bits
if input_size_per_partition * sum(
output_partition_sizes) % quant_ratio != 0:
raise ValueError(
"The input size is not aligned with the quantized "
"weight shape. ")
qweight = Parameter(
torch.empty(
input_size_per_partition * sum(output_partition_sizes) //
quant_ratio,
1,
dtype=torch.uint8,
),
requires_grad=False,
)
set_weight_attrs(
qweight,
{
"input_dim": 0,
# In bitsandbytes, a tensor of shape [n,m] is quantized to
#[n*m/pack_ratio, 1],so the output_dim is 0
"output_dim": 0,
"pack_factor": quant_ratio,
"use_bitsandbytes": True,
})
layer.register_parameter("qweight", qweight)
set_weight_attrs(qweight, extra_weight_attrs)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
# only load the bitsandbytes module when needed
from bitsandbytes import matmul_4bit
original_type = x.dtype
bf_x = x.to(torch.bfloat16)
qweight = layer.qweight
quant_states = qweight.bnb_quant_state
offsets = qweight.bnb_shard_offsets
out_dim_0 = x.shape[0]
out_dim_1 = sum(
[quant_state[1].shape[0] for quant_state in quant_states.items()])
out = torch.empty(out_dim_0,
out_dim_1,
dtype=torch.bfloat16,
device=x.device)
current_index = 0
for i in range(len(quant_states)):
output_size = quant_states[i].shape[0]
# It is more efficient to use out kwarg like
# matmul_4bit(..., out = ...). Infeasible now due to the bug
# https://github.com/TimDettmers/bitsandbytes/issues/1235.
# Need to change after the bug is fixed.
out[:, current_index:current_index + output_size] = matmul_4bit(
bf_x, qweight[offsets[i]:offsets[i + 1]].t(), quant_states[i])
current_index += output_size
out = out.to(original_type)
if bias is not None:
out += bias
return out