vllm/tests/models/language/pooling/test_scoring.py
Cyrus Leung 48e925fab5
[Misc] Clean up test docstrings and names (#17521)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-01 05:19:32 -07:00

174 lines
5.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import math
import pytest
import torch
import torch.nn.functional as F
CROSS_ENCODER_MODELS = [
"cross-encoder/ms-marco-MiniLM-L-6-v2", # Bert
"BAAI/bge-reranker-v2-m3", # Roberta
]
EMBEDDING_MODELS = [
"sentence-transformers/all-MiniLM-L12-v2",
]
TEXTS_1 = [
"What is the capital of France?",
"What is the capital of Germany?",
]
TEXTS_2 = [
"The capital of France is Paris.",
"The capital of Germany is Berlin.",
]
DTYPE = "half"
@pytest.fixture(scope="module", params=CROSS_ENCODER_MODELS)
def model_name(request):
yield request.param
def test_cross_encoder_1_to_1(vllm_runner, hf_runner, model_name):
text_pair = [TEXTS_1[0], TEXTS_2[0]]
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict([text_pair]).tolist()
with vllm_runner(model_name, task="score", dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(text_pair[0], text_pair[1])
assert len(vllm_outputs) == 1
assert len(hf_outputs) == 1
assert math.isclose(hf_outputs[0], vllm_outputs[0], rel_tol=0.01)
def test_cross_encoder_1_to_N(vllm_runner, hf_runner, model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[0], TEXTS_2[1]],
]
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict(text_pairs).tolist()
with vllm_runner(model_name, task="score", dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert math.isclose(hf_outputs[0], vllm_outputs[0], rel_tol=0.01)
assert math.isclose(hf_outputs[1], vllm_outputs[1], rel_tol=0.01)
def test_cross_encoder_N_to_N(vllm_runner, hf_runner, model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[1], TEXTS_2[1]],
]
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict(text_pairs).tolist()
with vllm_runner(model_name, task="score", dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert math.isclose(hf_outputs[0], vllm_outputs[0], rel_tol=0.01)
assert math.isclose(hf_outputs[1], vllm_outputs[1], rel_tol=0.01)
@pytest.fixture(scope="module", params=EMBEDDING_MODELS)
def emb_model_name(request):
yield request.param
def test_embedding_1_to_1(vllm_runner, hf_runner, emb_model_name):
text_pair = [TEXTS_1[0], TEXTS_2[0]]
with hf_runner(emb_model_name, dtype=DTYPE,
is_sentence_transformer=True) as hf_model:
hf_embeddings = hf_model.encode(text_pair)
hf_outputs = [
F.cosine_similarity(*map(torch.tensor, hf_embeddings), dim=0)
]
with vllm_runner(emb_model_name,
task="embed",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(text_pair[0], text_pair[1])
assert len(vllm_outputs) == 1
assert len(hf_outputs) == 1
assert math.isclose(hf_outputs[0], vllm_outputs[0], rel_tol=0.01)
def test_embedding_1_to_N(vllm_runner, hf_runner, emb_model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[0], TEXTS_2[1]],
]
with hf_runner(emb_model_name, dtype=DTYPE,
is_sentence_transformer=True) as hf_model:
hf_embeddings = [
hf_model.encode(text_pair) for text_pair in text_pairs
]
hf_outputs = [
F.cosine_similarity(*map(torch.tensor, pair), dim=0)
for pair in hf_embeddings
]
with vllm_runner(emb_model_name,
task="embed",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert math.isclose(hf_outputs[0], vllm_outputs[0], rel_tol=0.01)
assert math.isclose(hf_outputs[1], vllm_outputs[1], rel_tol=0.01)
def test_embedding_N_to_N(vllm_runner, hf_runner, emb_model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[1], TEXTS_2[1]],
]
with hf_runner(emb_model_name, dtype=DTYPE,
is_sentence_transformer=True) as hf_model:
hf_embeddings = [
hf_model.encode(text_pair) for text_pair in text_pairs
]
hf_outputs = [
F.cosine_similarity(*map(torch.tensor, pair), dim=0)
for pair in hf_embeddings
]
with vllm_runner(emb_model_name,
task="embed",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert math.isclose(hf_outputs[0], vllm_outputs[0], rel_tol=0.01)
assert math.isclose(hf_outputs[1], vllm_outputs[1], rel_tol=0.01)