mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:05:01 +08:00
153 lines
5.3 KiB
Python
153 lines
5.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
"""This example demonstrates wrapping a request-level logits processor to be
|
|
compatible with vLLM's batch-level logits processing
|
|
|
|
For demo purposes, a dummy logits processor is employed which, if
|
|
`target_token` is passed as a keyword argument to `SamplingParams.extra_args`,
|
|
will mask out all tokens except `target_token`. This logits processor can be
|
|
applied to a vector of logits associated with a single decode step for a single
|
|
request. The logits processor cannot be applied to a request which does not
|
|
pass in a `target_token` custom argument.
|
|
|
|
The request-level dummy logits processor is wrapped to create a batch-level
|
|
logits processor, which can apply the logits processor to output logits from
|
|
all requests in the persistent batch in a given decode step. For requests which
|
|
do not provide a `target_token` argument, the corresponding row of `logits`
|
|
will not be modified.
|
|
|
|
A batch is constructed with `temperature=0.0` and 50% of requests specifying
|
|
`target_token`, and for these requests - and *only* these requests - we
|
|
expect the `target_token` to be decoded in each step, yielding an output
|
|
similar to that shown below:
|
|
|
|
Generated Outputs:
|
|
------------------------------------------------------------
|
|
Prompt: 'Hello, my name is'
|
|
Output: " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '"
|
|
------------------------------------------------------------
|
|
Prompt: 'The president of the United States is'
|
|
Output: " not a racist. He is a racist.\nHe's a racist because he"
|
|
------------------------------------------------------------
|
|
Prompt: 'The capital of France is'
|
|
Output: ' also also also also also also also also also also also also also
|
|
also also also'
|
|
------------------------------------------------------------
|
|
Prompt: 'The future of AI is'
|
|
Output: ' in the hands of the people.\n\nThe future of AI is in the'
|
|
------------------------------------------------------------
|
|
"""
|
|
|
|
from typing import Any
|
|
|
|
import torch
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.logger import init_logger
|
|
from vllm.v1.sample.logits_processor import (
|
|
AdapterLogitsProcessor,
|
|
RequestLogitsProcessor,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class DummyPerReqLogitsProcessor:
|
|
"""The request-level logits processor masks out all logits except the
|
|
token id identified by `target_token`"""
|
|
|
|
def __init__(self, target_token: int) -> None:
|
|
"""Specify `target_token`"""
|
|
self.target_token = target_token
|
|
|
|
def __call__(
|
|
self,
|
|
output_ids: list[int],
|
|
logits: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
val_to_keep = logits[self.target_token].item()
|
|
logits[:] = float("-inf")
|
|
logits[self.target_token] = val_to_keep
|
|
return logits
|
|
|
|
|
|
class WrappedPerReqLogitsProcessor(AdapterLogitsProcessor):
|
|
"""Example of wrapping a fake request-level logit processor to create a
|
|
batch-level logits processor"""
|
|
|
|
@classmethod
|
|
def validate_params(cls, params: SamplingParams):
|
|
target_token: Any | None = params.extra_args and params.extra_args.get(
|
|
"target_token"
|
|
)
|
|
if target_token is not None and not isinstance(target_token, int):
|
|
raise ValueError(f"target_token value {target_token} is not int")
|
|
|
|
def is_argmax_invariant(self) -> bool:
|
|
return False
|
|
|
|
def new_req_logits_processor(
|
|
self,
|
|
params: SamplingParams,
|
|
) -> RequestLogitsProcessor | None:
|
|
"""This method returns a new request-level logits processor, customized
|
|
to the `target_token` value associated with a particular request.
|
|
|
|
Returns None if the logits processor should not be applied to the
|
|
particular request. To use the logits processor the request must have
|
|
a "target_token" custom argument with an integer value.
|
|
|
|
Args:
|
|
params: per-request sampling params
|
|
|
|
Returns:
|
|
`Callable` request logits processor, or None
|
|
"""
|
|
target_token: Any | None = params.extra_args and params.extra_args.get(
|
|
"target_token"
|
|
)
|
|
if target_token is None:
|
|
return None
|
|
return DummyPerReqLogitsProcessor(target_token)
|
|
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
# Create a mixture of requests which do and don't utilize the dummy logitproc
|
|
sampling_params_list = [
|
|
SamplingParams(temperature=0.0, extra_args={"target_token": 128}),
|
|
SamplingParams(temperature=0.0),
|
|
SamplingParams(temperature=0.0, extra_args={"target_token": 67}),
|
|
SamplingParams(temperature=0.0),
|
|
]
|
|
|
|
|
|
def main():
|
|
# Create an LLM.
|
|
llm = LLM(
|
|
model="facebook/opt-125m",
|
|
logits_processors=[WrappedPerReqLogitsProcessor],
|
|
)
|
|
# Generate texts from the prompts.
|
|
# The output is a list of RequestOutput objects
|
|
# that contain the prompt, generated text, and other information.
|
|
outputs = llm.generate(prompts, sampling_params_list)
|
|
# Print the outputs.
|
|
print("\nGenerated Outputs:\n" + "-" * 60)
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Prompt: {prompt!r}")
|
|
print(f"Output: {generated_text!r}")
|
|
print("-" * 60)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|