vllm/tests/distributed/test_eplb_fused_moe_layer.py
Varun Sundar Rabindranath 3137991f55
[BugFix] EPLB + B200 + DeepGEMM : Handle column-major scales tensor (#29162)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-11-21 14:28:17 -08:00

286 lines
9.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Test that the interaction between EPLB and FusedMoE Layer is okay
from dataclasses import dataclass
import pytest
import torch
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.distributed.eplb.rebalance_execute import rearrange_expert_weights_inplace
from vllm.distributed.parallel_state import (
ensure_model_parallel_initialized,
get_tp_group,
)
from vllm.model_executor.layers.fused_moe.layer import FusedMoE
from .eplb_utils import distributed_run, set_env_vars_and_device
@dataclass
class TestConfig:
num_layers: int
num_experts: int
num_local_experts: int
num_topk: int
hidden_size: int
intermediate_size: int
weight_dtype: torch.dtype
weight_scale_dtype: torch.dtype | None
column_major_scales: bool
def make_expert_weights(
layer_idx: int,
global_expert_idx: int,
global_num_experts: int,
tensor_shape: tuple[int, ...],
tensor_dtype: torch.dtype,
tensor_device: torch.device,
is_column_major: bool,
) -> torch.Tensor:
assert len(tensor_shape) == 2
if is_column_major:
tensor_shape = (tensor_shape[1], tensor_shape[0])
x = torch.empty(tensor_shape, dtype=tensor_dtype, device=tensor_device)
value_offset = (layer_idx * global_num_experts + global_expert_idx) * x.numel()
x.view(-1).copy_(
torch.arange(
value_offset,
value_offset + x.numel(),
dtype=tensor_dtype,
device=tensor_device,
)
)
if is_column_major:
x = torch.transpose(x, 1, 0)
assert not x.is_contiguous()
return x
def make_fused_moe_layer(
rank: int,
layer_idx: int,
test_config: TestConfig,
) -> FusedMoE:
fml = FusedMoE(
num_experts=test_config.num_experts,
top_k=test_config.num_topk,
hidden_size=test_config.hidden_size,
intermediate_size=test_config.intermediate_size,
prefix=f"dummy_layer_{layer_idx}",
activation="silu",
is_act_and_mul=True,
params_dtype=test_config.weight_dtype,
)
device = torch.device(f"cuda:{rank}")
from functools import partial
_make_expert_weights = partial(
make_expert_weights,
layer_idx=layer_idx,
global_num_experts=test_config.num_experts,
tensor_device=device,
)
assert isinstance(fml.w13_weight.data, torch.Tensor)
assert isinstance(fml.w2_weight.data, torch.Tensor)
fml.w13_weight.data = fml.w13_weight.data.to(device=device)
fml.w2_weight.data = fml.w2_weight.data.to(device=device)
w13_weight = fml.w13_weight.data
w2_weight = fml.w2_weight.data
assert w13_weight.size(0) == test_config.num_local_experts
for i in range(test_config.num_local_experts):
g_i = rank * test_config.num_local_experts + i
w13_weight_e = w13_weight[i]
w2_weight_e = w2_weight[i]
w13_weight_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w13_weight_e.shape,
tensor_dtype=w13_weight_e.dtype,
is_column_major=False,
)
)
w2_weight_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w2_weight_e.shape,
tensor_dtype=w2_weight_e.dtype,
is_column_major=False,
)
)
block_size = 16
def block_quant_scales_shape(
shape: tuple[int, ...], is_column_major: bool
) -> tuple[int, ...]:
assert len(shape) == 3
if not is_column_major:
return (shape[0], shape[1] // block_size, shape[2] // block_size)
else:
return (shape[0], shape[2] // block_size, shape[1] // block_size)
is_column_major = test_config.column_major_scales
w13_weight_scale_inv = torch.empty(
block_quant_scales_shape(w13_weight.shape, is_column_major),
dtype=test_config.weight_dtype,
device=device,
)
w2_weight_scale_inv = torch.empty(
block_quant_scales_shape(w2_weight.shape, is_column_major),
dtype=test_config.weight_dtype,
device=device,
)
for i in range(test_config.num_local_experts):
g_i = rank * test_config.num_local_experts + i
w13_s_e = w13_weight_scale_inv[i]
w2_s_e = w2_weight_scale_inv[i]
w13_s_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w13_s_e.shape,
tensor_dtype=w13_s_e.dtype,
# Fill data in row-major and then
# transpose if test_config requires col-major.
is_column_major=False,
)
)
w2_s_e.copy_(
_make_expert_weights(
global_expert_idx=g_i,
tensor_shape=w2_s_e.shape,
tensor_dtype=w2_s_e.dtype,
is_column_major=False,
)
)
if is_column_major:
w13_weight_scale_inv = torch.transpose(w13_weight_scale_inv, 1, 2)
w2_weight_scale_inv = torch.transpose(w2_weight_scale_inv, 1, 2)
assert not w13_weight_scale_inv.is_contiguous()
assert not w2_weight_scale_inv.is_contiguous()
# Add scales to the parameter list
fml.w13_weight_scale_inv = torch.nn.Parameter(
w13_weight_scale_inv, requires_grad=False
)
fml.w2_weight_scale_inv = torch.nn.Parameter(
w2_weight_scale_inv, requires_grad=False
)
return fml
def _test_eplb_fml(env, world_size: int, test_config: TestConfig):
# Initialize model parallel (using tensor parallel as an entrypoint
# to expert parallel)
set_env_vars_and_device(env)
vllm_config = VllmConfig()
vllm_config.parallel_config.tensor_parallel_size = world_size
vllm_config.parallel_config.enable_expert_parallel = True
with set_current_vllm_config(vllm_config):
ensure_model_parallel_initialized(
tensor_model_parallel_size=world_size, pipeline_model_parallel_size=1
)
ep_group = get_tp_group().cpu_group
ep_rank = torch.distributed.get_rank()
fml_layers = [
make_fused_moe_layer(ep_rank, layer_idx, test_config)
for layer_idx in range(test_config.num_layers)
]
rank_expert_weights = [fml.get_expert_weights() for fml in fml_layers]
indices = torch.zeros(
test_config.num_layers, test_config.num_experts, dtype=torch.long
)
for lidx in range(test_config.num_layers):
indices[lidx] = torch.Tensor(range(test_config.num_experts))
shuffled_indices = torch.zeros_like(indices)
for lidx in range(test_config.num_layers):
shuffled_indices[lidx] = torch.randperm(test_config.num_experts)
rearrange_expert_weights_inplace(
indices,
shuffled_indices,
rank_expert_weights,
ep_group,
is_profile=False,
)
num_local_experts = test_config.num_local_experts
num_global_experts = test_config.num_experts
for lidx, fml in enumerate(fml_layers):
for name, w in fml.named_parameters():
for e in range(num_local_experts):
g_e = shuffled_indices[lidx][ep_rank * num_local_experts + e]
ref = make_expert_weights(
layer_idx=lidx,
global_expert_idx=int(g_e.item()),
global_num_experts=num_global_experts,
tensor_shape=w[e].shape,
tensor_dtype=w[e].dtype,
tensor_device=w[e].device,
is_column_major=not w[e].is_contiguous(),
)
assert w[e].shape == ref.shape and w[e].stride() == ref.stride(), (
f"w[{e}] {w[e].size()} {w[e].stride()} vs "
f"ref {ref.size()} {ref.stride()}"
)
torch.testing.assert_close(w[e], ref)
@pytest.mark.parametrize("world_size", [2])
@pytest.mark.parametrize("num_layers", [4])
@pytest.mark.parametrize("num_experts", [16])
@pytest.mark.parametrize("hidden_size", [256])
@pytest.mark.parametrize("intermediate_size", [256])
@pytest.mark.parametrize("column_major_scales", [True, False])
def test_eplb_fml(
world_size: int,
num_layers: int,
num_experts: int,
hidden_size: int,
intermediate_size: int,
column_major_scales: bool,
):
if torch.cuda.device_count() < world_size:
pytest.skip(f"Need at least {world_size} GPUs to run the test")
num_local_experts = num_experts // world_size
num_topk = 4
# The dtypes are fine as we are essentially just checking data-copies
weight_dtype = torch.bfloat16
weight_scale_dtype = torch.bfloat16
test_config = TestConfig(
num_layers=num_layers,
num_experts=num_experts,
num_local_experts=num_local_experts,
num_topk=num_topk,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
weight_dtype=weight_dtype,
weight_scale_dtype=weight_scale_dtype,
column_major_scales=column_major_scales,
)
distributed_run(
_test_eplb_fml,
world_size,
test_config,
)