vllm/tests/distributed/test_eplb_spec_decode.py
WeiQing Chen 2601f18a82
[EPLB] Optimize EPLB for Async Rearrange Experts (#22179)
Signed-off-by: David Chen <530634352@qq.com>
Co-authored-by: SunChenxiang123 <1291824390@qq.com>
2025-11-24 09:08:29 -05:00

134 lines
3.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from __future__ import annotations
import lm_eval
import pytest
from tests.utils import large_gpu_mark
def get_model_args(
model_name: str,
spec_model_name: str | None,
spec_method: str,
tp_size: int,
model_max_len: int,
use_async: bool = False,
) -> dict:
speculative_config = {
"method": spec_method,
"model": spec_model_name,
"num_speculative_tokens": 1,
"max_model_len": model_max_len,
}
model_args = {
"pretrained": model_name,
"dtype": "auto",
"add_bos_token": True,
"tensor_parallel_size": tp_size,
"gpu_memory_utilization": 0.7,
"speculative_config": speculative_config,
"enable_expert_parallel": True,
"num_redundant_experts": tp_size,
"eplb_window_size": 128,
"eplb_step_interval": 1024,
"eplb_log_balancedness": False,
"enable_eplb": True,
"max_model_len": model_max_len,
}
if use_async:
model_args["eplb_config"] = {"use_async": True}
return model_args
@pytest.mark.parametrize(
"model_setup",
[
pytest.param(
("mtp", "Qwen/Qwen3-Next-80B-A3B-Instruct", None, 4, 0.86),
marks=large_gpu_mark(min_gb=80),
),
pytest.param(
(
"eagle",
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
"morgendave/EAGLE-Llama-4-Scout-17B-16E-Instruct",
4,
0.92,
),
marks=pytest.mark.skip(reason="Skipping due to CI OOM issues"),
),
],
ids=["qwen3_next_mtp", "llama4_eagle"],
)
def test_eplb_spec_decode(
monkeypatch: pytest.MonkeyPatch,
model_setup: tuple[str, str, str, int, float],
):
"""
Test the correctness of EPLB speculative decoding with GSM8K dataset.
Applicable to MoE models with mtp or eagle spec decode.
"""
method, model_name, spec_model_name, tp_size, expected_gsm8k_value = model_setup
TASK = "gsm8k"
FILTER = "exact_match,strict-match"
RTOL = 0.03
model_args = get_model_args(
model_name=model_name,
spec_model_name=spec_model_name,
spec_method=method,
tp_size=tp_size,
model_max_len=4096,
)
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=TASK,
batch_size=64,
num_fewshot=8,
)
measured_value = results["results"][TASK][FILTER]
assert (
measured_value - RTOL < expected_gsm8k_value
and measured_value + RTOL > expected_gsm8k_value
), f"Expected: {expected_gsm8k_value} | Measured: {measured_value}"
@large_gpu_mark(min_gb=80)
def test_eplb_spec_decode_qwen3_next_mtp_async() -> None:
"""
Ensure async EPLB works with MTP speculative decoding for Qwen3-Next.
"""
TASK = "gsm8k"
FILTER = "exact_match,strict-match"
RTOL = 0.03
expected_gsm8k_value = 0.86
model_args = get_model_args(
model_name="Qwen/Qwen3-Next-80B-A3B-Instruct",
spec_model_name=None,
spec_method="mtp",
tp_size=4,
model_max_len=4096,
use_async=True,
)
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=TASK,
batch_size=64,
num_fewshot=8,
)
measured_value = results["results"][TASK][FILTER]
assert (
measured_value - RTOL < expected_gsm8k_value
and measured_value + RTOL > expected_gsm8k_value
), f"Expected: {expected_gsm8k_value} | Measured: {measured_value}"