vllm/tests/kernels/quantization/test_cutlass_2of4_sparse.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

237 lines
7.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for sparse cutlass kernels
Run `pytest tests/kernels/quantization/test_cutlass_2of4_sparse.py`.
"""
import pytest
import torch
from tests.kernels.utils import baseline_scaled_mm, to_fp8, to_int8
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
sparse_cutlass_supported,
)
from vllm.platforms import current_platform
CUDA_DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
def to_bf16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.bfloat16)
def to_fp16(tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(dtype=torch.float16)
def prune_to_2_4(tensor):
# Reshape tensor to [N, 4] where N is number of groups of 4
original_shape = tensor.shape
reshaped = tensor.reshape(-1, 4)
# Get indices of top 2 absolute values in each group of 4
_, indices = torch.topk(torch.abs(reshaped), k=2, dim=1)
# Create binary mask
mask = torch.zeros_like(reshaped)
mask.scatter_(dim=1, index=indices, src=torch.ones_like(indices, dtype=mask.dtype))
# Apply mask and reshape back
pruned = reshaped * mask
# Turn all -0.0 to 0.0
pruned[pruned == -0.0] = 0.0
return pruned.reshape(original_shape)
# This function checks that applying an identity matrix multiplication
# to the compressed weights yields the original uncompressed weights.
def check_compress_decompress_invariance(
dtype: torch.dtype,
b: torch.Tensor,
b_compressed: torch.Tensor,
b_metadata: torch.Tensor,
):
# For float16 and bfloat16, cutlass_scaled_sparse_mm's output must be the
# same dtype as its inputs. This line addresses that constraint while
# arbitrarily using bfloat16 for the int8/fp8 cases.
out_dtype = torch.float16 if dtype is torch.float16 else torch.bfloat16
eye = torch.eye(b.shape[0], device="cuda", dtype=dtype)
eye_scale = torch.ones(1, device="cuda", dtype=torch.float32)
b_decomp = ops.cutlass_scaled_sparse_mm(
eye, b_compressed, b_metadata, eye_scale, eye_scale, out_dtype=out_dtype
)
torch.testing.assert_close(b.to(dtype=out_dtype), b_decomp)
def make_rand_sparse_tensors(
dtype: torch.dtype, m: int, n: int, k: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
a = torch.randn((m, k), device="cuda")
b = torch.randn((n, k), device="cuda").t()
if dtype == torch.int8:
# ensure A and B aren't all zeros after rounding
a = a * 5.0
b = b * 5.0
b = prune_to_2_4(b.t()).t()
if dtype == torch.int8:
a, b = to_int8(a), to_int8(b)
elif dtype == torch.float8_e4m3fn:
a, b = to_fp8(a), to_fp8(b)
elif dtype == torch.float16:
a, b = to_fp16(a), to_fp16(b)
elif dtype == torch.bfloat16:
a, b = to_bf16(a), to_bf16(b)
else:
raise ValueError("unsupported dtype")
b_compressed, e = ops.cutlass_sparse_compress(b.t())
check_compress_decompress_invariance(dtype, b, b_compressed, e)
# Compressed B, Metadata, Original A, B
return b_compressed, e, a, b
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.",
)
# Test working with a subset of A and B for sparse matmul
def test_cutlass_sparse_subset():
big_m = 1024
m, n, k = 512, 512, 512
# Create tensors
b_comp, e, whole_a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, big_m, n, k)
a = whole_a[0:m, 0:k]
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10
out = ops.cutlass_scaled_sparse_mm(
a, b_comp, e, scale_a, scale_b, out_dtype=torch.bfloat16
)
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype=torch.bfloat16)
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)
MNK_FACTORS = [
(1, 256, 128),
(1, 16384, 1024),
(1, 24576, 512),
(16, 256, 512),
(16, 16384, 128),
(16, 24576, 4096),
(32, 8192, 4096),
(32, 16384, 4096),
(33, 1024, 1024),
(33, 8192, 128),
(64, 2048, 512),
(64, 16384, 1024),
(100, 8192, 512),
(128, 32768, 4096),
(256, 4096, 4096),
(512, 256, 1024),
(512, 8192, 4096),
(512, 16384, 128),
(512, 24576, 128),
]
# Test working with a subset of A and B for sparse matmul
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.",
)
@pytest.mark.parametrize("m, n, k", MNK_FACTORS)
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_sparse_gemm(
m: int, k: int, n: int, dtype: type[torch.dtype], use_bias: bool
):
# Create tensors
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k)
scale_a = torch.ones((1, 1), device="cuda", dtype=torch.float32)
scale_b = torch.ones((1, 1), device="cuda", dtype=torch.float32)
bias = torch.rand((n,), device="cuda", dtype=dtype) if use_bias else None
out = ops.cutlass_scaled_sparse_mm(
a, b_comp, e, scale_a, scale_b, out_dtype=dtype, bias=bias
)
baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype=dtype, bias=bias)
torch.testing.assert_close(out, baseline, rtol=1e-2, atol=3e-1)
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.",
)
@pytest.mark.parametrize("m, k, n", MNK_FACTORS)
@pytest.mark.skipif(
not current_platform.has_device_capability(89),
reason="FP8 is not supported on this GPU type.",
)
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_sparse_fp8_gemm(m: int, n: int, k: int, use_bias: bool):
# Create tensors
b_comp, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k)
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32)
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32)
out_dtype = torch.bfloat16
bias = torch.rand((n,), device="cuda", dtype=out_dtype) * 10 if use_bias else None
out = ops.cutlass_scaled_sparse_mm(
a, b_comp, e, scale_a, scale_b, out_dtype=out_dtype, bias=bias
)
baseline = baseline_scaled_mm(
a, b, scale_a, scale_b, out_dtype=out_dtype, bias=bias
)
torch.testing.assert_close(out, baseline, rtol=1e-2, atol=3e-1)
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="Sparse CUTLASS is not supported on this GPU type.",
)
@pytest.mark.parametrize("m,k,n", MNK_FACTORS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.parametrize("use_bias", [True, False])
def test_cutlass_sparse_int8_gemm(
m: int, n: int, k: int, per_act_token: bool, per_out_ch: bool, use_bias: bool
):
# Create tensors
b_comp, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32)
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32)
out_dtype = torch.bfloat16
bias = torch.rand((n,), device="cuda", dtype=out_dtype) * 10 if use_bias else None
out = ops.cutlass_scaled_sparse_mm(
a, b_comp, e, scale_a, scale_b, out_dtype=out_dtype, bias=bias
)
baseline = baseline_scaled_mm(
a, b, scale_a, scale_b, out_dtype=out_dtype, bias=bias
)
torch.testing.assert_close(out, baseline, rtol=1e0, atol=2e0)