vllm/tests/lora/test_gptoss_tp.py
Jee Jee Li 1073ba68b0
[LoRA] Optimize 3D MoE logic (#29222)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-11-24 10:27:23 +08:00

107 lines
4.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import vllm
from vllm.lora.request import LoRARequest
from ..utils import multi_gpu_test
MODEL_PATH = "openai/gpt-oss-20b"
PROMPT_TEMPLATE = """<|start|>system<|message|>You are ChatGPT, a large language model trained by OpenAI.
Knowledge cutoff: 2024-06
Current date: 2025-10-29
Reasoning: medium
# Valid channels: analysis, commentary, final. Channel must be included for every message.<|end|><|start|>user<|message|>I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.
"
##Instruction:
farm contains tables such as city, farm, farm_competition, competition_record. Table city has columns such as City_ID, Official_Name, Status, Area_km_2, Population, Census_Ranking. City_ID is the primary key.
Table farm has columns such as Farm_ID, Year, Total_Horses, Working_Horses, Total_Cattle, Oxen, Bulls, Cows, Pigs, Sheep_and_Goats. Farm_ID is the primary key.
Table farm_competition has columns such as Competition_ID, Year, Theme, Host_city_ID, Hosts. Competition_ID is the primary key.
Table competition_record has columns such as Competition_ID, Farm_ID, Rank. Competition_ID is the primary key.
The Host_city_ID of farm_competition is the foreign key of City_ID of city.
The Farm_ID of competition_record is the foreign key of Farm_ID of farm.
The Competition_ID of competition_record is the foreign key of Competition_ID of farm_competition.
###Input:
{context}
###Response:<|end|><|start|>assistant<|channel|>final<|message|>""" # noqa: E501
EXPECTED_LORA_OUTPUT = [
"SELECT AVG(Working_Horses) FROM farm WHERE Total_Horses > 5000;",
"SELECT MAX(Cows) AS Max_Cows, MIN(Cows) AS Min_Cows FROM farm;",
"SELECT MAX(Cows) AS Max_Cows, MIN(Cows) AS Min_Cows FROM farm;",
]
def generate_and_test(llm: vllm.LLM, lora_path: str, lora_id: int) -> None:
prompts = [
PROMPT_TEMPLATE.format(
context="Give the average number of working horses on farms with more than 5000 total horses." # noqa: E501
), # noqa: E501
PROMPT_TEMPLATE.format(
context="What are the maximum and minimum number of cows across all farms."
),
PROMPT_TEMPLATE.format(
context="Return the maximum and minimum number of cows across all farms."
),
]
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=64)
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None,
)
# Print the outputs.
generated_texts: list[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert generated_texts[i].startswith(EXPECTED_LORA_OUTPUT[i])
def test_gpt_oss_lora(gptoss20b_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
max_lora_rank=8,
compilation_config=vllm.config.CompilationConfig( # Avoid OOM
cudagraph_specialize_lora=False,
),
)
generate_and_test(llm, gptoss20b_lora_files, lora_id=1)
generate_and_test(llm, gptoss20b_lora_files, lora_id=2)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("fully_sharded_loras", [False, True])
def test_gpt_oss_lora_tp2(gptoss20b_lora_files, fully_sharded_loras):
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=2,
max_lora_rank=8,
max_num_seqs=16,
tensor_parallel_size=2,
fully_sharded_loras=fully_sharded_loras,
compilation_config=vllm.config.CompilationConfig( # Avoid OOM
cudagraph_specialize_lora=False,
),
)
generate_and_test(llm, gptoss20b_lora_files, lora_id=1)
generate_and_test(llm, gptoss20b_lora_files, lora_id=2)