mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-23 23:35:01 +08:00
Signed-off-by: oliveryuan <yuansong@step.ai> Co-authored-by: oliveryuan <yuansong@step.ai>
110 lines
4.1 KiB
Python
110 lines
4.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Sequence
|
|
from typing import Optional, Union
|
|
|
|
import regex as re
|
|
from transformers import PreTrainedTokenizerBase
|
|
|
|
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
|
DeltaMessage)
|
|
from vllm.logger import init_logger
|
|
from vllm.reasoning import ReasoningParser, ReasoningParserManager
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@ReasoningParserManager.register_module("step3")
|
|
class Step3ReasoningParser(ReasoningParser):
|
|
"""
|
|
Reasoning parser for Step3 model.
|
|
|
|
The Step3 model uses </think> token to denote the end of reasoning
|
|
text. This parser extracts all content before </think> as reasoning content.
|
|
"""
|
|
|
|
def __init__(self, tokenizer: PreTrainedTokenizerBase):
|
|
super().__init__(tokenizer)
|
|
self.think_end_token = "</think>"
|
|
|
|
self.reasoning_regex = re.compile(rf"(.*?){self.think_end_token}",
|
|
re.DOTALL)
|
|
|
|
if not self.model_tokenizer:
|
|
raise ValueError(
|
|
"The model tokenizer must be passed to the ReasoningParser "
|
|
"constructor during construction.")
|
|
|
|
self.think_end_token_id = self.vocab.get(self.think_end_token)
|
|
if self.think_end_token_id is None:
|
|
raise RuntimeError(
|
|
"Step3 reasoning parser could not locate think end "
|
|
"token in the tokenizer!")
|
|
|
|
def extract_reasoning_content_streaming(
|
|
self,
|
|
previous_text: str,
|
|
current_text: str,
|
|
delta_text: str,
|
|
previous_token_ids: Sequence[int],
|
|
current_token_ids: Sequence[int],
|
|
delta_token_ids: Sequence[int],
|
|
) -> Union[DeltaMessage, None]:
|
|
"""
|
|
Extract reasoning content from a delta message.
|
|
Handles streaming output where previous + delta = current.
|
|
Uses token IDs for faster processing.
|
|
For text "abc</think>xyz":
|
|
- 'abc' goes to reasoning_content
|
|
- 'xyz' goes to content
|
|
"""
|
|
# Skip single special token
|
|
if len(delta_token_ids
|
|
) == 1 and delta_token_ids[0] == self.think_end_token_id:
|
|
return None
|
|
|
|
if self.think_end_token_id in delta_token_ids:
|
|
# </think> in delta, extract reasoning content and remaining content
|
|
end_index = delta_text.find(self.think_end_token)
|
|
reasoning_content = delta_text[:end_index]
|
|
content = delta_text[end_index + len(self.think_end_token):]
|
|
return DeltaMessage(reasoning_content=reasoning_content,
|
|
content=content if content else None)
|
|
elif self.think_end_token_id in previous_token_ids:
|
|
# </think> already seen in previous text, everything is content
|
|
return DeltaMessage(content=delta_text)
|
|
else:
|
|
# No </think> seen yet, everything is reasoning
|
|
return DeltaMessage(reasoning_content=delta_text)
|
|
|
|
def extract_reasoning_content(
|
|
self, model_output: str, request: ChatCompletionRequest
|
|
) -> tuple[Optional[str], Optional[str]]:
|
|
|
|
# Check if the model output contains the </think> token
|
|
if self.think_end_token not in model_output:
|
|
# If no </think> token, everything is reasoning content
|
|
return model_output, None
|
|
else:
|
|
# Find the first occurrence of </think>
|
|
end_index = model_output.find(self.think_end_token)
|
|
reasoning_content = model_output[:end_index]
|
|
|
|
# Content after </think> token
|
|
content = model_output[end_index + len(self.think_end_token):]
|
|
|
|
if len(content) == 0:
|
|
content = None
|
|
|
|
return reasoning_content, content
|
|
|
|
def is_reasoning_end(self, input_ids: list[int]) -> bool:
|
|
return self.think_end_token_id in input_ids
|
|
|
|
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
|
|
if self.think_end_token_id not in input_ids[:-1]:
|
|
return []
|
|
else:
|
|
return input_ids[input_ids.index(self.think_end_token_id) + 1:]
|