vllm/tests/kernels/mamba/test_mamba_ssm_ssd.py
Fardin Hoque 577c72a227
[CI Perf]Prune Tests in kernel/mamba (#26538)
Signed-off-by: Fardin Hoque <kfhfar@amazon.com>
Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-10-13 18:22:31 -04:00

570 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from vllm.model_executor.layers.mamba.ops.ssd_combined import (
mamba_chunk_scan_combined_varlen,
)
from vllm.platforms import current_platform
from vllm.v1.attention.backends.mamba2_attn import compute_varlen_chunk_metadata
# Added by the IBM Team, 2024
# Adapted from https://github.com/state-spaces/mamba/blob/v2.2.4/mamba_ssm/modules/ssd_minimal.py
# this is the segsum implementation taken from above
def segsum(x):
"""Calculates segment sum."""
T = x.size(-1)
x = repeat(x, "... d -> ... d e", e=T)
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool), diagonal=-1)
x = x.masked_fill(~mask, 0)
x_segsum = torch.cumsum(x, dim=-2)
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool), diagonal=0)
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
return x_segsum
def ssd_minimal_discrete(X, A, B, C, block_len, initial_states=None):
"""
Arguments:
X: (batch, length, n_heads, d_head)
A: (batch, length, n_heads)
B: (batch, length, n_heads, d_state)
C: (batch, length, n_heads, d_state)
Return:
Y: (batch, length, n_heads, d_head)
"""
assert X.dtype == A.dtype == B.dtype == C.dtype
assert X.shape[1] % block_len == 0
# Rearrange into blocks/chunks
X, A, B, C = (
rearrange(x, "b (c l) ... -> b c l ...", l=block_len) for x in (X, A, B, C)
)
A = rearrange(A, "b c l h -> b h c l")
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
L = torch.exp(segsum(A))
Y_diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C, B, L, X)
# 2. Compute the state for each intra-chunk
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
states = torch.einsum("bclhn,bhcl,bclhp->bchpn", B, decay_states, X)
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at
# chunk boundaries
# (middle term of factorization of off-diag blocks; A terms)
if initial_states is None:
initial_states = torch.zeros_like(states[:, :1])
states = torch.cat([initial_states, states], dim=1)
decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0))))
new_states = torch.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
states, final_state = new_states[:, :-1], new_states[:, -1]
# 4. Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
Y_off = torch.einsum("bclhn,bchpn,bhcl->bclhp", C, states, state_decay_out)
# Add output of intra-chunk and inter-chunk terms
# (diagonal and off-diagonal blocks)
Y = rearrange(Y_diag + Y_off, "b c l h p -> b (c l) h p")
return Y, final_state
def generate_random_inputs(batch_size, seqlen, n_heads, d_head, itype, device="cuda"):
current_platform.seed_everything(0)
A = -torch.exp(torch.rand(n_heads, dtype=itype, device=device))
dt = F.softplus(
torch.randn(batch_size, seqlen, n_heads, dtype=itype, device=device) - 4
)
X = torch.randn((batch_size, seqlen, n_heads, d_head), dtype=itype, device=device)
B = torch.randn((batch_size, seqlen, n_heads, d_head), dtype=itype, device=device)
C = torch.randn((batch_size, seqlen, n_heads, d_head), dtype=itype, device=device)
return A, dt, X, B, C
def generate_continuous_batched_examples(
example_lens_by_batch,
num_examples,
full_length,
last_taken,
exhausted,
n_heads,
d_head,
itype,
device="cuda",
return_naive_ref=True,
):
# this function generates a random examples of certain length
# and then cut according to "example_lens_by_batch" and feed
# them in continuous batches to the kernels.
# If if return_naive_ref=True, the naive torch implementation
# ssd_minimal_discrete will be used to compute and return
# reference output.
# generate the full-length example
A, dt, X, B, C = generate_random_inputs(
num_examples, full_length, n_heads, d_head, itype
)
if return_naive_ref:
Y_min, final_state_min = ssd_minimal_discrete(
X * dt.unsqueeze(-1), A * dt, B, C, block_len=full_length // 4
)
# internal function that outputs a cont batch of examples
# given a tuple of lengths for each example in the batch
# e.g., example_lens=(8, 4) means take 8 samples from first eg,
# 4 examples from second eg, etc
def get_continuous_batch(example_lens: tuple[int, ...]):
indices = []
for i, x in enumerate(example_lens):
c = last_taken.get(i, 0)
indices.append((c, c + x))
last_taken[i] = (c + x) % full_length
exhausted[i] = last_taken[i] == 0
return (
torch.concat([x[i, s:e] for i, (s, e) in enumerate(indices)]).unsqueeze(0)
for x in (dt, X, B, C)
)
# internal function that maps "n" to the appropriate right boundary
# value when forming continuous batches from examples of length given
# by "full_length".
# - e.g., when n > full_length, returns n % full_length
# when n == full_length, returns full_length
def end_boundary(n: int):
return n - ((n - 1) // full_length) * full_length
IND_E = None
for spec in example_lens_by_batch:
# get the (maybe partial) example seen in this cont batch
dt2, X2, B2, C2 = get_continuous_batch(spec)
# get the metadata
cu_seqlens = torch.tensor((0,) + spec, device=device).cumsum(dim=0)
seq_idx = torch.zeros(
cu_seqlens[-1], dtype=torch.int32, device=cu_seqlens.device
)
for i, (srt, end) in enumerate(
zip(
cu_seqlens,
cu_seqlens[1:],
)
):
seq_idx[srt:end] = i
# for cont batch
if IND_E is None:
IND_S = [0 for _ in range(len(spec))]
else:
IND_S = [x % full_length for x in IND_E]
IND_E = [end_boundary(x + y) for x, y in zip(IND_S, spec)]
# varlen has implicit batch=1
dt2 = dt2.squeeze(0)
X2 = X2.squeeze(0)
B2 = B2.squeeze(0)
C2 = C2.squeeze(0)
yield (
[Y_min[s, IND_S[s] : IND_E[s]] for s in range(num_examples)]
if return_naive_ref
else None,
cu_seqlens,
seq_idx,
(A, dt2, X2, B2, C2),
)
@pytest.mark.parametrize("itype", [torch.float32, torch.bfloat16])
@pytest.mark.parametrize("n_heads", [4, 16, 32])
@pytest.mark.parametrize("d_head", [5, 8, 32, 128])
@pytest.mark.parametrize("seq_len_chunk_size", [(112, 16), (128, 32)])
def test_mamba_chunk_scan_single_example(d_head, n_heads, seq_len_chunk_size, itype):
# this tests the kernels on a single example (bs=1)
# TODO: the bfloat16 case requires higher thresholds. To be investigated
if itype == torch.bfloat16:
atol, rtol = 5e-2, 5e-2
else:
atol, rtol = 8e-3, 5e-3
# set seed
batch_size = 1 # batch_size
# ssd_minimal_discrete requires chunk_size divide seqlen
# - this is only required for generating the reference seqs,
# it is not an operational limitation.
seqlen, chunk_size = seq_len_chunk_size
A, dt, X, B, C = generate_random_inputs(batch_size, seqlen, n_heads, d_head, itype)
Y_min, final_state_min = ssd_minimal_discrete(
X * dt.unsqueeze(-1), A * dt, B, C, chunk_size
)
cu_seqlens = torch.tensor((0, seqlen), device="cuda").cumsum(dim=0)
cu_chunk_seqlens, last_chunk_indices, seq_idx_chunks = (
compute_varlen_chunk_metadata(cu_seqlens, chunk_size)
)
# varlen has implicit batch=1
X = X.squeeze(0)
dt = dt.squeeze(0)
A = A.squeeze(0)
B = B.squeeze(0)
C = C.squeeze(0)
Y = torch.empty_like(X)
final_state = mamba_chunk_scan_combined_varlen(
X,
dt,
A,
B,
C,
chunk_size,
cu_seqlens=cu_seqlens.to(torch.int32),
cu_chunk_seqlens=cu_chunk_seqlens,
last_chunk_indices=last_chunk_indices,
seq_idx=seq_idx_chunks,
out=Y,
D=None,
)
# just test the last in sequence
torch.testing.assert_close(Y[-1], Y_min[0, -1], atol=atol, rtol=rtol)
# just test the last head
# NOTE, in the kernel we always cast states to fp32
torch.testing.assert_close(
final_state[:, -1].to(torch.float32),
final_state_min[:, -1].to(torch.float32),
atol=atol,
rtol=rtol,
)
@pytest.mark.parametrize("itype", [torch.float32])
@pytest.mark.parametrize("n_heads", [4, 8])
@pytest.mark.parametrize("d_head", [5, 16, 32])
@pytest.mark.parametrize(
"seq_len_chunk_size_cases",
[
# small-ish chunk_size (8)
(64, 8, 2, [(64, 32), (64, 32)]),
(64, 8, 2, [(8, 8), (8, 8), (8, 8)]), # chunk size boundary
(
64,
8,
2,
[(4, 4), (4, 4), (4, 4), (4, 4)],
), # chunk_size larger than cont batches
(64, 8, 5, [(64, 32, 16, 8, 8)]),
# large-ish chunk_size (256)
(64, 256, 1, [(5,), (1,), (1,), (1,)]), # irregular sizes with small sequences
(
64,
256,
2,
[(5, 30), (1, 2), (1, 2), (1, 2)],
), # irregular sizes with small sequences
# we also need to test some large seqlen
# to catch errors with init states decay
(768, 128, 2, [(138, 225), (138, 225)]),
],
)
def test_mamba_chunk_scan_cont_batch(d_head, n_heads, seq_len_chunk_size_cases, itype):
# this test with multiple examples in a continuous batch
# (i.e. chunked prefill)
seqlen, chunk_size, num_examples, cases = seq_len_chunk_size_cases
# This test can have larger error for longer sequences
if seqlen > 256:
atol, rtol = 1e-2, 5e-3
else:
atol, rtol = 5e-3, 5e-3
# hold state during the cutting process so we know if an
# example has been exhausted and needs to cycle
last_taken: dict = {} # map: eg -> pointer to last taken sample
exhausted: dict = {} # map: eg -> boolean indicating example is exhausted
states = None
for Y_min, cu_seqlens, _token_seq_idx, (
A,
dt,
X,
B,
C,
) in generate_continuous_batched_examples(
cases, num_examples, seqlen, last_taken, exhausted, n_heads, d_head, itype
):
cu_chunk_seqlens, last_chunk_indices, seq_idx_chunks = (
compute_varlen_chunk_metadata(cu_seqlens, chunk_size)
)
Y = torch.empty_like(X)
new_states = mamba_chunk_scan_combined_varlen(
X,
dt,
A,
B,
C,
chunk_size,
cu_seqlens=cu_seqlens.to(torch.int32),
cu_chunk_seqlens=cu_chunk_seqlens,
last_chunk_indices=last_chunk_indices,
seq_idx=seq_idx_chunks,
out=Y,
D=None,
initial_states=states,
)
# just test the last in sequence
for i in range(num_examples):
# just test one dim and dstate
Y_eg = Y[cu_seqlens[i] : cu_seqlens[i + 1], 0, 0]
Y_min_eg = Y_min[i][:, 0, 0]
torch.testing.assert_close(Y_eg, Y_min_eg, atol=atol, rtol=rtol)
# update states
states = new_states
for i, clear in exhausted.items():
if clear:
states[i].fill_(0.0)
exhausted[i] = False
@pytest.mark.parametrize("chunk_size", [8, 256])
@pytest.mark.parametrize(
"seqlens",
[(16, 20), (270, 88, 212, 203)],
)
def test_mamba_chunk_scan_cont_batch_prefill_chunking(chunk_size, seqlens):
# This test verifies the correctness of the chunked prefill implementation
# in the mamba2 ssd kernels, by comparing concatenation (in the sequence
# dimension) of chunked results with the full sequence result.
# It is different from test_mamba_chunk_scan_cont_batch by:
# 1. Not using the naive torch implementation (ssd_minimal_discrete) to get
# reference outputs. Instead, it compares chunked kernel outputs to full
# sequence kernel outputs. This is the most straightforward way to
# assert chunked prefill correctness.
# 2. It focuses on cases where sequences change in the middle of mamba
# chunks, and not necessarily on chunk boundaries.
max_seqlen = max(seqlens)
# This test can have larger error for longer sequences
if max_seqlen > 256:
atol, rtol = 1e-2, 5e-3
else:
atol, rtol = 5e-3, 5e-3
num_sequences = len(seqlens)
n_heads = 16
d_head = 64
itype = torch.float32
# hold state during the cutting process so we know if an
# example has been exhausted and needs to cycle
last_taken: dict = {} # map: eg -> pointer to last taken sample
exhausted: dict = {} # map: eg -> boolean indicating example is exhausted
_, cu_seqlens, seq_idx, (A, dt, X, B, C) = next(
generate_continuous_batched_examples(
[seqlens],
num_sequences,
max_seqlen,
last_taken,
exhausted,
n_heads,
d_head,
itype,
return_naive_ref=False,
)
)
seqlens = torch.tensor(seqlens, dtype=torch.int32, device=X.device)
device = X.device
## full seqlen computation
cu_chunk_seqlens, last_chunk_indices, seq_idx_chunks = (
compute_varlen_chunk_metadata(cu_seqlens, chunk_size)
)
Y_ref = torch.empty_like(X)
state_ref = mamba_chunk_scan_combined_varlen(
X,
dt,
A,
B,
C,
chunk_size,
cu_seqlens=cu_seqlens.to(torch.int32),
cu_chunk_seqlens=cu_chunk_seqlens,
last_chunk_indices=last_chunk_indices,
seq_idx=seq_idx_chunks,
out=Y_ref,
D=None,
initial_states=None,
)
## chunked seqlen computation
# first chunk
chunked_seqlens = seqlens // 2
chunked_cu_seqlens = torch.cat(
[torch.tensor([0], device=device), torch.cumsum(chunked_seqlens, dim=0)], dim=0
)
chunked_input_seq_len = chunked_cu_seqlens[-1]
X_chunked = torch.zeros_like(X)[:chunked_input_seq_len, ...]
dt_chunked = torch.zeros_like(dt)[:chunked_input_seq_len, ...]
B_chunked = torch.zeros_like(B)[:chunked_input_seq_len, ...]
C_chunked = torch.zeros_like(C)[:chunked_input_seq_len, ...]
for i in range(num_sequences):
chunk_f = lambda x, i: x[
cu_seqlens[i] : cu_seqlens[i] + chunked_seqlens[i], ...
]
X_chunked[chunked_cu_seqlens[i] : chunked_cu_seqlens[i + 1], ...] = chunk_f(
X, i
)
dt_chunked[chunked_cu_seqlens[i] : chunked_cu_seqlens[i + 1], ...] = chunk_f(
dt, i
)
B_chunked[chunked_cu_seqlens[i] : chunked_cu_seqlens[i + 1], ...] = chunk_f(
B, i
)
C_chunked[chunked_cu_seqlens[i] : chunked_cu_seqlens[i + 1], ...] = chunk_f(
C, i
)
cu_chunk_seqlens, last_chunk_indices, seq_idx_chunks = (
compute_varlen_chunk_metadata(chunked_cu_seqlens, chunk_size)
)
Y_partial = torch.empty_like(X_chunked)
partial_state = mamba_chunk_scan_combined_varlen(
X_chunked,
dt_chunked,
A,
B_chunked,
C_chunked,
chunk_size,
cu_seqlens=chunked_cu_seqlens.to(torch.int32),
cu_chunk_seqlens=cu_chunk_seqlens,
last_chunk_indices=last_chunk_indices,
seq_idx=seq_idx_chunks,
out=Y_partial,
D=None,
initial_states=None,
)
# remaining chunk
remaining_chunked_seqlens = seqlens - chunked_seqlens
remaining_chunked_cu_seqlens = torch.cat(
[
torch.tensor([0], device=device),
torch.cumsum(remaining_chunked_seqlens, dim=0),
],
dim=0,
)
remaining_chunked_input_seq_len = remaining_chunked_cu_seqlens[-1]
remaining_X_chunked = torch.zeros_like(X)[:remaining_chunked_input_seq_len, ...]
remaining_dt_chunked = torch.zeros_like(dt)[:remaining_chunked_input_seq_len, ...]
remaining_B_chunked = torch.zeros_like(B)[:remaining_chunked_input_seq_len, ...]
remaining_C_chunked = torch.zeros_like(C)[:remaining_chunked_input_seq_len, ...]
for i in range(num_sequences):
remaining_chunk_f = lambda x, i: x[
cu_seqlens[i] + chunked_seqlens[i] : cu_seqlens[i + 1], ...
]
remaining_X_chunked[
remaining_chunked_cu_seqlens[i] : remaining_chunked_cu_seqlens[i + 1], ...
] = remaining_chunk_f(X, i)
remaining_dt_chunked[
remaining_chunked_cu_seqlens[i] : remaining_chunked_cu_seqlens[i + 1], ...
] = remaining_chunk_f(dt, i)
remaining_B_chunked[
remaining_chunked_cu_seqlens[i] : remaining_chunked_cu_seqlens[i + 1], ...
] = remaining_chunk_f(B, i)
remaining_C_chunked[
remaining_chunked_cu_seqlens[i] : remaining_chunked_cu_seqlens[i + 1], ...
] = remaining_chunk_f(C, i)
# assert input chunking is correct
concat_chunk_f = lambda pt1, pt2, i: torch.cat(
[
pt1[chunked_cu_seqlens[i] : chunked_cu_seqlens[i + 1], ...],
pt2[
remaining_chunked_cu_seqlens[i] : remaining_chunked_cu_seqlens[i + 1],
...,
],
],
dim=0,
)
concat_batch_f = lambda pt1, pt2: torch.cat(
[concat_chunk_f(pt1, pt2, i) for i in range(num_sequences)], dim=0
)
assert concat_batch_f(X_chunked, remaining_X_chunked).equal(X)
assert concat_batch_f(dt_chunked, remaining_dt_chunked).equal(dt)
assert concat_batch_f(B_chunked, remaining_B_chunked).equal(B)
assert concat_batch_f(C_chunked, remaining_C_chunked).equal(C)
cu_chunk_seqlens, last_chunk_indices, seq_idx_chunks = (
compute_varlen_chunk_metadata(remaining_chunked_cu_seqlens, chunk_size)
)
Y_chunked = torch.empty_like(remaining_X_chunked)
state_chunked = mamba_chunk_scan_combined_varlen(
remaining_X_chunked,
remaining_dt_chunked,
A,
remaining_B_chunked,
remaining_C_chunked,
chunk_size,
cu_seqlens=remaining_chunked_cu_seqlens.to(torch.int32),
cu_chunk_seqlens=cu_chunk_seqlens,
last_chunk_indices=last_chunk_indices,
seq_idx=seq_idx_chunks,
out=Y_chunked,
D=None,
initial_states=partial_state,
)
Y = concat_batch_f(Y_partial, Y_chunked)
# kernel chunked is same as kernel overall
for i in range(num_sequences):
Y_seq = Y[cu_seqlens[i] : cu_seqlens[i + 1], ...]
Y_ref_seq = Y_ref[cu_seqlens[i] : cu_seqlens[i + 1], ...]
torch.testing.assert_close(
Y_seq[: chunked_seqlens[i], ...],
Y_ref_seq[: chunked_seqlens[i], ...],
atol=atol,
rtol=rtol,
msg=lambda x, i=i: f"seq{i} output part1 " + x,
)
torch.testing.assert_close(
Y_seq[chunked_seqlens[i] :, ...],
Y_ref_seq[chunked_seqlens[i] :, ...],
atol=atol,
rtol=rtol,
msg=lambda x, i=i: f"seq{i} output part2 " + x,
)
state_seq = state_chunked[i]
state_seq_ref = state_ref[i]
torch.testing.assert_close(
state_seq,
state_seq_ref,
atol=atol,
rtol=rtol,
msg=lambda x, i=i: f"seq{i} state " + x,
)