vllm/vllm/worker/cpu_enc_dec_model_runner.py
Isotr0py 58170d6503
[Hardware][CPU] Add embedding models support for CPU backend (#10193)
Signed-off-by: Isotr0py <2037008807@qq.com>
2024-11-11 08:54:28 +00:00

311 lines
12 KiB
Python

import dataclasses
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, cast
import torch
from vllm.attention import AttentionMetadata
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.multimodal import MultiModalKwargs
from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
from vllm.utils import make_tensor_with_pad
from vllm.worker.cpu_model_runner import (CPUModelRunnerBase,
ModelInputForCPUBuilder,
ModelInputForCPUWithSamplingMetadata)
from vllm.worker.model_runner_base import (
_add_attn_metadata_broadcastable_dict,
_add_sampling_metadata_broadcastable_dict)
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
@dataclasses.dataclass(frozen=True)
class EncoderDecoderModelInputForCPU(ModelInputForCPUWithSamplingMetadata):
"""
Used by the EncoderDecoderModelRunner.
"""
encoder_input_tokens: Optional[torch.Tensor] = None
encoder_input_positions: Optional[torch.Tensor] = None
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
tensor_dict = {
"input_tokens": self.input_tokens,
"input_positions": self.input_positions,
"encoder_input_tokens": self.encoder_input_tokens,
"encoder_input_positions": self.encoder_input_positions,
}
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
_add_sampling_metadata_broadcastable_dict(tensor_dict,
self.sampling_metadata)
return tensor_dict
@classmethod
def from_broadcasted_tensor_dict(
cls,
tensor_dict: Dict[str, Any],
attn_backend: Optional["AttentionBackend"] = None,
) -> "EncoderDecoderModelInputForCPU":
return cast(
EncoderDecoderModelInputForCPU,
super().from_broadcasted_tensor_dict(tensor_dict, attn_backend))
class CPUEncoderDecoderModelRunner(
CPUModelRunnerBase[EncoderDecoderModelInputForCPU]):
_model_input_cls: Type[EncoderDecoderModelInputForCPU] = (
EncoderDecoderModelInputForCPU)
_builder_cls: Type[ModelInputForCPUBuilder] = ModelInputForCPUBuilder
def _list_to_int32_tensor(
self,
_list: List[int],
) -> torch.Tensor:
return torch.tensor(_list, dtype=torch.int32, device=self.device)
def _list_to_long_tensor(
self,
_list: List[int],
) -> torch.Tensor:
return torch.tensor(_list, dtype=torch.long, device=self.device)
def _empty_int32_tensor(self) -> torch.Tensor:
return self._list_to_int32_tensor([])
def _empty_long_tensor(self) -> torch.Tensor:
return self._list_to_long_tensor([])
def make_model_input_from_broadcasted_tensor_dict(
self, tensor_dict: Dict[str,
Any]) -> EncoderDecoderModelInputForCPU:
return EncoderDecoderModelInputForCPU.from_broadcasted_tensor_dict(
tensor_dict,
attn_backend=self.attn_backend,
)
def prepare_model_input(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
virtual_engine: int = 0,
finished_requests_ids: Optional[List[str]] = None
) -> EncoderDecoderModelInputForCPU:
model_input = self._prepare_model_input_tensors(
seq_group_metadata_list, finished_requests_ids)
(
attn_metadata,
encoder_input_tokens_tensor,
encoder_input_positions_tensor,
) = self._prepare_encoder_model_input_tensors(seq_group_metadata_list,
model_input)
return dataclasses.replace(
model_input,
attn_metadata=attn_metadata,
encoder_input_tokens=encoder_input_tokens_tensor,
encoder_input_positions=encoder_input_positions_tensor,
)
def _prepare_encoder_model_input_tensors(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
model_input: EncoderDecoderModelInputForCPU,
) -> Tuple[AttentionMetadata, Optional[torch.Tensor],
Optional[torch.Tensor]]:
"""Helper method to prepare the encoder- and cross-attn-related
model inputs based on a given sequence group. These additional inputs
are used to augment an already-computed `EncoderDecoderModelInput`
data structure which already has decoder-related model inputs
populated.
Sets the following attn_metadata fields:
* `num_encoder_tokens`
* `encoder_seq_lens`
* `encoder_seq_lens_tensor`
* `max_encoder_seq_len`
* `cross_slot_mapping`
* `cross_block_tables`
Constructs a new model inputs data structure, based on
(1) the existing fields in the `model_inputs` argument,
and (2) the following additional fields which are
computed (or in the case of `attn_metadata`, updated)
by this function:
* attn_metadata
* encoder_input_tokens
* encoder_input_positions
Arguments:
* seq_group_metadata_list: list of sequence groups for which to
compute inputs
* model_inputs: model inputs data structure with decoder-oriented
fields already computed.
Return:
* Updated model inputs data structure
"""
if len(seq_group_metadata_list) == 0:
return (model_input.attn_metadata, None, None)
# Since we are not supporting chunked prefill either the entire
# batch is prefill or it is decode
is_prompt = seq_group_metadata_list[0].is_prompt
# Build encoder inputs
encoder_seq_lens: List[int] = []
if is_prompt:
# Prefill phase.
cross_block_tables = self._empty_int32_tensor().view(
len(seq_group_metadata_list), -1)
# Extract input tokens/positions, cross-attention slot-mapping,
# & seq len from each sequence group metadata
(
encoder_input_tokens,
encoder_input_positions,
cross_slot_mapping,
) = (
[],
[],
[],
)
for seq_group_metadata in seq_group_metadata_list:
# Build seq lens
seq_len = seq_group_metadata.encoder_seq_data.get_len()
token_ids = seq_group_metadata.encoder_seq_data.get_token_ids()
encoder_seq_lens.append(seq_len)
# Build slot mapping
for i in range(0, seq_len):
block_number = seq_group_metadata.cross_block_table[
i // self.block_size]
block_offset = i % self.block_size
slot = block_number * self.block_size + block_offset
cross_slot_mapping.append(slot)
# Build encoder input tokens
encoder_input_tokens.extend(token_ids)
encoder_input_positions.extend(list(range(0, seq_len)))
# Convert tokens/positions & cross-attention
# slot-mapping to encoder input tensors
encoder_input_tokens_tensor = self._list_to_long_tensor(
encoder_input_tokens)
encoder_input_positions_tensor = self._list_to_long_tensor(
encoder_input_positions)
cross_slot_mapping_tensor = self._list_to_long_tensor(
cross_slot_mapping)
else:
# Decode phase.
encoder_input_tokens_tensor = self._empty_long_tensor()
encoder_input_positions_tensor = self._empty_long_tensor()
cross_slot_mapping_tensor = self._empty_long_tensor()
# Extract cross-attention block tables &
# seq len from each sequence group metadata.
# Cross-attention block tables are empty
# during vLLM memory profiling.
cross_block_tables = []
for seq_group_metadata in seq_group_metadata_list:
for _ in range(len(seq_group_metadata.seq_data)):
encoder_seq_lens.append(
seq_group_metadata.encoder_seq_data.get_len())
cross_block_table = seq_group_metadata.cross_block_table
cross_block_tables.append([] if (
cross_block_table is None) else cross_block_table)
max_len_of_block_table = max(
len(block_table) for block_table in cross_block_tables)
cross_block_tables = make_tensor_with_pad(
cross_block_tables,
max_len=max_len_of_block_table,
pad=0,
dtype=torch.int32,
device=self.device,
)
# Compute encoder sequence lengths & encoder
# sequence starting offset tensors
max_encoder_seq_len = max(encoder_seq_lens, default=0)
encoder_seq_lens_tensor = self._list_to_int32_tensor(encoder_seq_lens)
encoder_seq_start_loc = torch.zeros(encoder_seq_lens_tensor.shape[0] +
1,
dtype=torch.int32,
device=self.device)
torch.cumsum(encoder_seq_lens_tensor,
dim=0,
dtype=encoder_seq_start_loc.dtype,
out=encoder_seq_start_loc[1:])
# Update attention metadata with encoder-oriented attributes
attn_metadata = model_input.attn_metadata
assert attn_metadata is not None
(
attn_metadata.num_encoder_tokens,
attn_metadata.encoder_seq_lens,
attn_metadata.encoder_seq_lens_tensor,
attn_metadata.max_encoder_seq_len,
attn_metadata.cross_slot_mapping,
attn_metadata.cross_block_tables,
) = (
sum(encoder_seq_lens),
encoder_seq_lens,
encoder_seq_lens_tensor,
max_encoder_seq_len,
cross_slot_mapping_tensor,
cross_block_tables,
)
return (attn_metadata, encoder_input_tokens_tensor,
encoder_input_positions_tensor)
@torch.no_grad()
def execute_model(
self,
model_input: EncoderDecoderModelInputForCPU,
kv_caches: List[torch.Tensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
num_steps: int = 1,
) -> Optional[List[SamplerOutput]]:
if num_steps > 1:
raise ValueError(
"CPU worker does not support multi-step execution.")
model_executable = self.model
execute_model_kwargs = {
"input_ids":
model_input.input_tokens,
"positions":
model_input.input_positions,
"encoder_input_ids":
model_input.encoder_input_tokens,
"encoder_positions":
model_input.encoder_input_positions,
"kv_caches":
kv_caches,
"attn_metadata":
model_input.attn_metadata,
**MultiModalKwargs.as_kwargs(model_input.multi_modal_kwargs or {},
device=self.device),
"intermediate_tensors":
intermediate_tensors,
}
hidden_states = model_executable(**execute_model_kwargs)
# Compute the logits.
logits = self.model.compute_logits(hidden_states,
model_input.sampling_metadata)
# Only perform sampling in the driver worker.
if not self.is_driver_worker:
return []
# Sample the next token.
output = self.model.sample(
logits=logits,
sampling_metadata=model_input.sampling_metadata,
)
return [output]