mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 10:55:50 +08:00
147 lines
5.4 KiB
Python
147 lines
5.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from collections.abc import Iterable, Mapping
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import BatchFeature, PretrainedConfig
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.inputs import TokensPrompt
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import (SupportsCrossEncoding, SupportsMultiModal,
|
|
SupportsScoreTemplate)
|
|
from .qwen2_vl import (Qwen2VLDummyInputsBuilder,
|
|
Qwen2VLForConditionalGeneration,
|
|
Qwen2VLMultiModalProcessor, Qwen2VLProcessingInfo)
|
|
from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class JinaVLScorer(nn.Module):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.dense = ColumnParallelLinear(config.hidden_size,
|
|
config.hidden_size,
|
|
bias=True)
|
|
self.out_proj = RowParallelLinear(config.hidden_size,
|
|
config.num_labels,
|
|
bias=True)
|
|
|
|
def forward(self, x, **kwargs):
|
|
x, _ = self.dense(x)
|
|
x = torch.relu(x)
|
|
x, _ = self.out_proj(x)
|
|
return x
|
|
|
|
|
|
class JinaVLMultiModalProcessor(Qwen2VLMultiModalProcessor):
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
|
|
# NOTE: We should reverse the order of the mm_data because the
|
|
# query prompt is placed after the document prompt in the score
|
|
# template for JinaVLForRanking model, but in mm_data they are
|
|
# stored in the opposite order (query first, then document).
|
|
for _, value in mm_data.items():
|
|
value.reverse()
|
|
return super()._call_hf_processor(prompt, mm_data, mm_kwargs,
|
|
tok_kwargs)
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(JinaVLMultiModalProcessor,
|
|
info=Qwen2VLProcessingInfo,
|
|
dummy_inputs=Qwen2VLDummyInputsBuilder)
|
|
class JinaVLForSequenceClassification(Qwen2VLForConditionalGeneration,
|
|
SupportsCrossEncoding,
|
|
SupportsMultiModal,
|
|
SupportsScoreTemplate):
|
|
|
|
is_pooling_model = True
|
|
weight_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"score.0.": "score.dense.",
|
|
"score.2.": "score.out_proj.",
|
|
# mapping for new names in checkpoint saved after transformers v4.52
|
|
"model.language_model.": "language_model.model.",
|
|
"visual.": "visual.",
|
|
# mapping for original checkpoint
|
|
"lm_head.": "language_model.lm_head.",
|
|
"model.": "language_model.model.",
|
|
})
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "qwen2_vl"))
|
|
config = vllm_config.model_config.hf_config
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
|
|
# logit bias for sigmoid normalization
|
|
self.LOGIT_BIAS = 2.65
|
|
|
|
self.score = JinaVLScorer(config)
|
|
self.pooler = DispatchPooler({
|
|
"encode":
|
|
Pooler.for_encode(pooler_config),
|
|
"classify":
|
|
Pooler.for_classify(pooler_config, classifier=None),
|
|
"score":
|
|
Pooler.for_classify(pooler_config, classifier=None),
|
|
})
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
|
if modality.startswith("image"):
|
|
return "<|vision_start|><|image_pad|><|vision_end|>"
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
@classmethod
|
|
def get_score_template(cls, query: str, document: str) -> Optional[str]:
|
|
return f"**Document**:\n{document}\n**Query**:\n{query}"
|
|
|
|
@classmethod
|
|
def post_process_tokens(cls, prompt: TokensPrompt) -> None:
|
|
|
|
# add score target token at the end of prompt tokens
|
|
prompt['prompt_token_ids'].append(100)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor:
|
|
hidden_states = super().forward(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
**kwargs,
|
|
)
|
|
|
|
logits = self.score(hidden_states) - self.LOGIT_BIAS
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.weight_mapper)
|