vllm/vllm/lora/layers/row_parallel_linear.py
Jee Jee Li 59659b74c4 [Core] Optimize LoRA weight loading (#25403)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-10-03 13:35:54 -07:00

202 lines
7.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional, Union, cast
import torch
import torch.nn as nn
from transformers import PretrainedConfig
from vllm.config.lora import LoRAConfig
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_reduce)
# yapf: disable
from vllm.model_executor.layers.linear import RowParallelLinear
from vllm.platforms import current_platform
from .base_linear import BaseLinearLayerWithLoRA
from .utils import _fully_sharded_can_replace, _not_fully_sharded_can_replace
class RowParallelLinearWithLoRA(BaseLinearLayerWithLoRA):
def __init__(self, base_layer: RowParallelLinear) -> None:
super().__init__(base_layer)
self.tp_size = get_tensor_model_parallel_world_size()
# reset input_size
self.input_size = self.base_layer.input_size_per_partition
self.output_size = self.base_layer.output_size
self.tp_rank = get_tensor_model_parallel_rank()
# There is only one LoRA layer.
self.n_slices = 1
def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
shard_size = self.input_size
start_idx = self.tp_rank * shard_size
end_idx = (self.tp_rank + 1) * shard_size
lora_a = lora_a[:,start_idx:end_idx]
return lora_a
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
return lora_b
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
return bias
def forward(
self, input_: torch.Tensor
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[torch.Tensor]]]:
"""Forward of RowParallelLinear
Args:
input_: tensor whose last dimension is `input_size`. If
`input_is_parallel` is set, then the last dimension
is `input_size // tp_size`.
Returns:
- output
- bias
"""
# set up backprop all-reduce.
if self.base_layer.input_is_parallel:
input_parallel = input_
else:
# TODO: simplify code below
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.base_layer.tp_size)
input_parallel = splitted_input[self.tp_rank].contiguous()
# Matrix multiply.
output_parallel = self.apply(input_parallel)
if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
output_ = tensor_model_parallel_all_reduce(output_parallel)
else:
output_ = output_parallel
if not self.base_layer.skip_bias_add:
output = (output_ + self.base_layer.bias
if self.base_layer.bias is not None else output_)
output_bias = None
else:
output = output_
output_bias = self.base_layer.bias
if not self.base_layer.return_bias:
return output
return output, output_bias
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is RowParallelLinear
# The following layer is based on the tensor parallelism strategy given in
# Y. Sheng et al., S-LoRA: Serving Thousands of Concurrent LoRA Adapters. 2023,
# https://arxiv.org/abs/2311.03285.
class RowParallelLinearWithShardedLoRA(RowParallelLinearWithLoRA):
"""
Differs from RowParallelLinearWithLoRA by slicing the
LoRA B's also.
Based on S-LoRA, slicing happens along the output dim.
This yields a combined partial sum from the row parallel base
layer and column partitioned output from the LoRA.
"""
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
shard_size = self.lora_b_stacked[0].shape[2]
start_idx = self.tp_rank * shard_size
end_idx = (self.tp_rank + 1) * shard_size
lora_b = lora_b[ start_idx:end_idx,:]
return lora_b
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
if bias is None:
return bias
self.lora_bias_stacked = cast(tuple[torch.Tensor, ...],
self.lora_bias_stacked)
shard_size = self.lora_bias_stacked[0].shape[2]
start_idx = self.tp_rank * shard_size
end_idx = (self.tp_rank + 1) * shard_size
bias = bias[start_idx:end_idx]
return bias
def apply(self,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
output = self.base_layer.quant_method.apply(self.base_layer, x)
x = x.view(-1, x.shape[-1])
output, out_orig_shape = output.view(-1,
output.shape[-1]), output.shape
buffer = torch.zeros(
(self.n_slices, x.shape[0], self.lora_a_stacked[0].shape[2]),
dtype=torch.float32,
device=x.device,
)
shrunk_buffer: Optional[torch.Tensor] = self.punica_wrapper.add_shrink(
buffer, x, self.lora_a_stacked, 1.0)
if not current_platform.can_update_inplace():
buffer = shrunk_buffer
buffer = tensor_model_parallel_all_reduce(buffer)
# following S-LoRA, allows the fusing of all_gather and all_reduce
# by adding the column partitioned lora output to a slice of output
# tensor, which is a partial sum due to row parallel. All that
# remains is a standard all_reduce. User should be aware though that
# the output is not the same as a normal row_parallel, it should be
# reduced before being used
# NOTE offset are based on the rank.
shard_size = self.lora_b_stacked[0].shape[2]
offset_start = self.tp_rank * shard_size
lora_output: Optional[torch.Tensor] = self.punica_wrapper.add_expand(
output,
buffer,
self.lora_b_stacked,
self.lora_bias_stacked,
self.output_slices,
offset_start=offset_start,
add_input=True,
)
if not current_platform.can_update_inplace():
output = lora_output
output = output.view(*out_orig_shape)
return output
@classmethod
@_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
# specifying kwargs so they can be easily accessed in decorator
return super().can_replace_layer(
source_layer=source_layer,
lora_config=lora_config,
packed_modules_list=packed_modules_list,
model_config=model_config,
decorate=False,
)