mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-22 19:04:27 +08:00
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
202 lines
7.0 KiB
Python
202 lines
7.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from typing import Optional, Union, cast
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.config.lora import LoRAConfig
|
|
from vllm.distributed import (get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
split_tensor_along_last_dim,
|
|
tensor_model_parallel_all_reduce)
|
|
# yapf: disable
|
|
from vllm.model_executor.layers.linear import RowParallelLinear
|
|
from vllm.platforms import current_platform
|
|
|
|
from .base_linear import BaseLinearLayerWithLoRA
|
|
from .utils import _fully_sharded_can_replace, _not_fully_sharded_can_replace
|
|
|
|
|
|
class RowParallelLinearWithLoRA(BaseLinearLayerWithLoRA):
|
|
|
|
def __init__(self, base_layer: RowParallelLinear) -> None:
|
|
super().__init__(base_layer)
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
# reset input_size
|
|
self.input_size = self.base_layer.input_size_per_partition
|
|
self.output_size = self.base_layer.output_size
|
|
|
|
self.tp_rank = get_tensor_model_parallel_rank()
|
|
# There is only one LoRA layer.
|
|
self.n_slices = 1
|
|
|
|
def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
|
|
|
|
shard_size = self.input_size
|
|
start_idx = self.tp_rank * shard_size
|
|
end_idx = (self.tp_rank + 1) * shard_size
|
|
lora_a = lora_a[:,start_idx:end_idx]
|
|
return lora_a
|
|
|
|
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
|
|
return lora_b
|
|
|
|
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
|
|
return bias
|
|
|
|
def forward(
|
|
self, input_: torch.Tensor
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[torch.Tensor]]]:
|
|
"""Forward of RowParallelLinear
|
|
|
|
Args:
|
|
input_: tensor whose last dimension is `input_size`. If
|
|
`input_is_parallel` is set, then the last dimension
|
|
is `input_size // tp_size`.
|
|
|
|
Returns:
|
|
- output
|
|
- bias
|
|
"""
|
|
# set up backprop all-reduce.
|
|
if self.base_layer.input_is_parallel:
|
|
input_parallel = input_
|
|
else:
|
|
# TODO: simplify code below
|
|
splitted_input = split_tensor_along_last_dim(
|
|
input_, num_partitions=self.base_layer.tp_size)
|
|
input_parallel = splitted_input[self.tp_rank].contiguous()
|
|
|
|
# Matrix multiply.
|
|
output_parallel = self.apply(input_parallel)
|
|
if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
|
|
output_ = tensor_model_parallel_all_reduce(output_parallel)
|
|
else:
|
|
output_ = output_parallel
|
|
|
|
if not self.base_layer.skip_bias_add:
|
|
output = (output_ + self.base_layer.bias
|
|
if self.base_layer.bias is not None else output_)
|
|
output_bias = None
|
|
else:
|
|
output = output_
|
|
output_bias = self.base_layer.bias
|
|
|
|
if not self.base_layer.return_bias:
|
|
return output
|
|
|
|
return output, output_bias
|
|
|
|
@classmethod
|
|
@_not_fully_sharded_can_replace
|
|
def can_replace_layer(
|
|
cls,
|
|
source_layer: nn.Module,
|
|
lora_config: LoRAConfig,
|
|
packed_modules_list: list,
|
|
model_config: Optional[PretrainedConfig],
|
|
) -> bool:
|
|
return type(source_layer) is RowParallelLinear
|
|
|
|
|
|
|
|
# The following layer is based on the tensor parallelism strategy given in
|
|
# Y. Sheng et al., S-LoRA: Serving Thousands of Concurrent LoRA Adapters. 2023,
|
|
# https://arxiv.org/abs/2311.03285.
|
|
|
|
class RowParallelLinearWithShardedLoRA(RowParallelLinearWithLoRA):
|
|
"""
|
|
Differs from RowParallelLinearWithLoRA by slicing the
|
|
LoRA B's also.
|
|
|
|
Based on S-LoRA, slicing happens along the output dim.
|
|
This yields a combined partial sum from the row parallel base
|
|
layer and column partitioned output from the LoRA.
|
|
"""
|
|
|
|
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
|
|
shard_size = self.lora_b_stacked[0].shape[2]
|
|
start_idx = self.tp_rank * shard_size
|
|
end_idx = (self.tp_rank + 1) * shard_size
|
|
lora_b = lora_b[ start_idx:end_idx,:]
|
|
return lora_b
|
|
|
|
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
|
|
if bias is None:
|
|
return bias
|
|
self.lora_bias_stacked = cast(tuple[torch.Tensor, ...],
|
|
self.lora_bias_stacked)
|
|
shard_size = self.lora_bias_stacked[0].shape[2]
|
|
start_idx = self.tp_rank * shard_size
|
|
end_idx = (self.tp_rank + 1) * shard_size
|
|
bias = bias[start_idx:end_idx]
|
|
return bias
|
|
|
|
def apply(self,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
output = self.base_layer.quant_method.apply(self.base_layer, x)
|
|
|
|
x = x.view(-1, x.shape[-1])
|
|
output, out_orig_shape = output.view(-1,
|
|
output.shape[-1]), output.shape
|
|
buffer = torch.zeros(
|
|
(self.n_slices, x.shape[0], self.lora_a_stacked[0].shape[2]),
|
|
dtype=torch.float32,
|
|
device=x.device,
|
|
)
|
|
|
|
shrunk_buffer: Optional[torch.Tensor] = self.punica_wrapper.add_shrink(
|
|
buffer, x, self.lora_a_stacked, 1.0)
|
|
if not current_platform.can_update_inplace():
|
|
buffer = shrunk_buffer
|
|
|
|
buffer = tensor_model_parallel_all_reduce(buffer)
|
|
|
|
# following S-LoRA, allows the fusing of all_gather and all_reduce
|
|
# by adding the column partitioned lora output to a slice of output
|
|
# tensor, which is a partial sum due to row parallel. All that
|
|
# remains is a standard all_reduce. User should be aware though that
|
|
# the output is not the same as a normal row_parallel, it should be
|
|
# reduced before being used
|
|
# NOTE offset are based on the rank.
|
|
shard_size = self.lora_b_stacked[0].shape[2]
|
|
offset_start = self.tp_rank * shard_size
|
|
lora_output: Optional[torch.Tensor] = self.punica_wrapper.add_expand(
|
|
output,
|
|
buffer,
|
|
self.lora_b_stacked,
|
|
self.lora_bias_stacked,
|
|
self.output_slices,
|
|
offset_start=offset_start,
|
|
add_input=True,
|
|
)
|
|
|
|
if not current_platform.can_update_inplace():
|
|
output = lora_output
|
|
|
|
output = output.view(*out_orig_shape)
|
|
return output
|
|
|
|
@classmethod
|
|
@_fully_sharded_can_replace
|
|
def can_replace_layer(
|
|
cls,
|
|
source_layer: nn.Module,
|
|
lora_config: LoRAConfig,
|
|
packed_modules_list: list,
|
|
model_config: Optional[PretrainedConfig],
|
|
) -> bool:
|
|
# specifying kwargs so they can be easily accessed in decorator
|
|
return super().can_replace_layer(
|
|
source_layer=source_layer,
|
|
lora_config=lora_config,
|
|
packed_modules_list=packed_modules_list,
|
|
model_config=model_config,
|
|
decorate=False,
|
|
)
|