mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 00:25:01 +08:00
186 lines
7.5 KiB
Python
186 lines
7.5 KiB
Python
import weakref
|
|
from typing import List, Optional, Set, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.model_executor.layers.sampler import SamplerOutput
|
|
from vllm.sequence import ExecuteModelRequest
|
|
from vllm.spec_decode.interfaces import SpeculativeProposals
|
|
from vllm.spec_decode.proposer_worker_base import NonLLMProposerWorkerBase
|
|
from vllm.spec_decode.top1_proposer import Top1Proposer
|
|
|
|
|
|
class _DummyModel(nn.Module):
|
|
pass
|
|
|
|
|
|
class NGramWorker(NonLLMProposerWorkerBase):
|
|
"""NGramWorker provides a light drafter without need for model.
|
|
|
|
Current NGramWorker only implements prompt lookup decoding,
|
|
and in future we may also do RAG type drafter and other scenarios
|
|
which don't rely on LLM model to give proposals.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
# Get local_rank/vocab_size from kwargs attribute
|
|
self.local_rank = kwargs["local_rank"]
|
|
self.vocab_size = kwargs["vllm_config"].model_config.get_vocab_size()
|
|
self.device_type = kwargs.get("device_type", "cuda")
|
|
|
|
# Lazy initialization list.
|
|
self._proposer: Top1Proposer
|
|
|
|
def set_ngram_window_size(self, ngram_prompt_lookup_min: int,
|
|
ngram_prompt_lookup_max: int):
|
|
# Search valid candidate window between
|
|
# ngram_prompt_lookup_min/ngram_prompt_lookup_max
|
|
self.ngram_prompt_lookup_max = ngram_prompt_lookup_max
|
|
self.ngram_prompt_lookup_min = ngram_prompt_lookup_min
|
|
|
|
def init_device(self):
|
|
self.device = torch.device(f"{self.device_type}:{self.local_rank}")
|
|
|
|
# Current NGramWorker only supports Top1Proposer
|
|
self._proposer = Top1Proposer(
|
|
weakref.proxy(self), # type: ignore[arg-type]
|
|
device=self.device,
|
|
vocab_size=self.vocab_size,
|
|
)
|
|
|
|
def load_model(self) -> None:
|
|
pass # Dummy
|
|
|
|
def get_model(self) -> nn.Module:
|
|
return _DummyModel()
|
|
|
|
def sampler_output(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest,
|
|
sample_len: int,
|
|
# Unused parameter. NGramWorker does not use the KV Cache and
|
|
# therefore does not need this parameter.
|
|
seq_ids_with_bonus_token_in_last_step: Set[int],
|
|
) -> Tuple[Optional[List[Optional[SamplerOutput]]], bool]:
|
|
"""NGram match algo to pick proposal candidate. Returns the list of
|
|
sampler output, one per SequenceGroupMetadata.
|
|
|
|
For ngram worker, we already done needed transposed internal, so the
|
|
indicator pass to sampler_output_to_torch shall be False.
|
|
"""
|
|
self._raise_if_unsupported(execute_model_req)
|
|
|
|
has_spec_out = False
|
|
token_id_list: List[Optional[torch.Tensor]] = []
|
|
token_prob_list: List[Optional[torch.Tensor]] = []
|
|
for idx, seq_group_metadata in enumerate(
|
|
execute_model_req.seq_group_metadata_list):
|
|
seq_data = next(iter(seq_group_metadata.seq_data.values()))
|
|
|
|
seq_len = seq_data.get_len()
|
|
# When seq_len is less than 3072 (3K), we use CPU to perform
|
|
# the ngram match. Otherwise, we use the device specified in
|
|
# the model config (normally GPU). 3072 is a rough threshold
|
|
# based on profiling on H100, and it can be adjusted based
|
|
# on the actual performance on different hardware.
|
|
cur_device = "cpu" if seq_len < 3072 else self.device
|
|
input_ids = torch.as_tensor(seq_data.get_token_ids(),
|
|
dtype=torch.long,
|
|
device=cur_device)
|
|
input_length = seq_data.get_len()
|
|
|
|
for ngram_size in range(
|
|
min(self.ngram_prompt_lookup_max, input_length - 1),
|
|
self.ngram_prompt_lookup_min - 1,
|
|
-1,
|
|
):
|
|
ngram_tensor = input_ids[-ngram_size:]
|
|
if ngram_size == 1:
|
|
# Do not match itself and do not use unfold and all
|
|
matches = (input_ids[:-1] == ngram_tensor)
|
|
else:
|
|
windows = input_ids.unfold(dimension=0,
|
|
size=ngram_size,
|
|
step=1)
|
|
# Do not match itself
|
|
matches = (windows[:-1] == ngram_tensor).all(dim=-1)
|
|
|
|
# first_match includes "values" (bool), indicating whether
|
|
# the match is found, and "indices", indicating the index
|
|
# of the first match.
|
|
first_match = matches.max(dim=-1)
|
|
if first_match.values.item():
|
|
proposal_start_idx = first_match.indices.add_(ngram_size)
|
|
spec_indices = (
|
|
proposal_start_idx).repeat(sample_len) + torch.arange(
|
|
sample_len, device=cur_device)
|
|
spec_indices.clamp_(max=input_ids.shape[-1] - 1)
|
|
res = input_ids.gather(dim=-1,
|
|
index=spec_indices).to(self.device)
|
|
token_id_list.append(res)
|
|
token_prob_list.append(
|
|
torch.nn.functional.one_hot(
|
|
res,
|
|
num_classes=self.vocab_size).to(torch.float32))
|
|
has_spec_out = True
|
|
break
|
|
else:
|
|
token_id_list.append(None)
|
|
token_prob_list.append(None)
|
|
|
|
if not has_spec_out:
|
|
return None, False
|
|
|
|
outputs: List[Optional[SamplerOutput]] = []
|
|
for idx in range(len(execute_model_req.seq_group_metadata_list)):
|
|
if token_id_list[idx] is None:
|
|
outputs.append(None)
|
|
else:
|
|
outputs.append(
|
|
SamplerOutput(
|
|
outputs=None,
|
|
sampled_token_probs=token_prob_list[idx],
|
|
logprobs=torch.zeros((sample_len, self.vocab_size),
|
|
dtype=torch.float32,
|
|
device=self.device),
|
|
sampled_token_ids=token_id_list[idx],
|
|
))
|
|
|
|
return outputs, False
|
|
|
|
def get_spec_proposals(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest,
|
|
# Unused parameter. NGramWorker does not use the KV Cache and
|
|
# therefore does not need this parameter.
|
|
seq_ids_with_bonus_token_in_last_step: Set[int],
|
|
) -> SpeculativeProposals:
|
|
"""Produce speculations given an input batch of sequences. The number of
|
|
speculative tokens per sequence is determined by max_proposal_len.
|
|
"""
|
|
return self._proposer.get_spec_proposals(
|
|
execute_model_req, seq_ids_with_bonus_token_in_last_step)
|
|
|
|
def _raise_if_unsupported(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest,
|
|
) -> None:
|
|
"""NGramWorker does not yet implement support for cache swap
|
|
operations or beam search.
|
|
"""
|
|
if any([
|
|
execute_model_req.blocks_to_swap_in,
|
|
execute_model_req.blocks_to_swap_out,
|
|
execute_model_req.blocks_to_copy
|
|
]):
|
|
raise NotImplementedError(
|
|
"NGramWorker does not support cache operations")
|
|
|
|
if any(
|
|
len(seq_group_metadata.seq_data.keys()) != 1
|
|
for seq_group_metadata in
|
|
execute_model_req.seq_group_metadata_list):
|
|
raise NotImplementedError(
|
|
"NGramWorker does not support beam search.")
|