vllm/benchmarks/kernels/benchmark_rope.py
Xin Yang 57201a6a4c
Fix rotary embedding benchmark script (#28323)
Signed-off-by: Xin Yang <xyangx@amazon.com>
2025-11-10 21:57:12 -05:00

107 lines
3.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
import torch
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.triton_utils import triton
from vllm.utils.argparse_utils import FlexibleArgumentParser
batch_size_range = [2**i for i in range(0, 8, 2)]
seq_len_range = [2**i for i in range(6, 10, 1)]
num_heads_range = [32, 48]
configs = list(itertools.product(batch_size_range, seq_len_range, num_heads_range))
def get_benchmark(head_size, rotary_dim, is_neox_style, device):
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len", "num_heads"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["torch", "flashinfer", "vllm"],
line_names=["PyTorch", "FlashInfer", "vLLM"],
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
ylabel="us",
plot_name=f"rope-perf{'-neox-style' if is_neox_style else ''}",
args={},
)
)
def benchmark(batch_size, seq_len, num_heads, provider):
dtype = torch.bfloat16
max_position = 8192
base = 10000
rope = get_rope(head_size, rotary_dim, max_position, base, is_neox_style)
rope = rope.to(dtype=dtype, device=device)
cos_sin_cache = rope.cos_sin_cache.to(dtype=torch.float, device=device)
positions = torch.randint(0, max_position, (batch_size, seq_len), device=device)
query = torch.randn(
(batch_size, seq_len, num_heads * head_size), dtype=dtype, device=device
)
key = torch.randn_like(query)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rope.forward_native(positions, query.clone(), key.clone()),
quantiles=quantiles,
)
elif provider == "flashinfer":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: torch.ops.vllm.flashinfer_rotary_embedding(
positions,
query.clone(),
key.clone(),
head_size,
cos_sin_cache,
is_neox_style,
),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rope.forward_cuda(positions, query.clone(), key.clone()),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
return benchmark
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the rotary embedding kernels."
)
parser.add_argument("--is-neox-style", type=bool, default=True)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--seq-len", type=int, default=512)
parser.add_argument("--num-heads", type=int, default=8)
parser.add_argument(
"--head-size",
type=int,
choices=[64, 80, 96, 112, 120, 128, 192, 256],
default=128,
)
parser.add_argument("--rotary-dim", type=int, choices=[16, 32], default=32)
parser.add_argument(
"--dtype", type=str, choices=["bfloat16", "float"], default="float"
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--device", type=str, choices=["cuda:0", "cuda:1"], default="cuda:0"
)
parser.add_argument("--save-path", type=str, default="./configs/rope/")
args = parser.parse_args()
# Get the benchmark function
benchmark = get_benchmark(
args.head_size, args.rotary_dim, args.is_neox_style, args.device
)
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)