mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:05:01 +08:00
vLLM CLI Guide
The vllm command-line tool is used to run and manage vLLM models. You can start by viewing the help message with:
vllm --help
Available Commands:
vllm {chat,complete,serve,bench,collect-env,run-batch}
serve
Start the vLLM OpenAI Compatible API server.
Examples:
# Start with a model
vllm serve meta-llama/Llama-2-7b-hf
# Specify the port
vllm serve meta-llama/Llama-2-7b-hf --port 8100
# Check with --help for more options
# To list all groups
vllm serve --help=listgroup
# To view a argument group
vllm serve --help=ModelConfig
# To view a single argument
vllm serve --help=max-num-seqs
# To search by keyword
vllm serve --help=max
chat
Generate chat completions via the running API server.
Examples:
# Directly connect to localhost API without arguments
vllm chat
# Specify API url
vllm chat --url http://{vllm-serve-host}:{vllm-serve-port}/v1
# Quick chat with a single prompt
vllm chat --quick "hi"
complete
Generate text completions based on the given prompt via the running API server.
Examples:
# Directly connect to localhost API without arguments
vllm complete
# Specify API url
vllm complete --url http://{vllm-serve-host}:{vllm-serve-port}/v1
# Quick complete with a single prompt
vllm complete --quick "The future of AI is"
bench
Run benchmark tests for latency online serving throughput and offline inference throughput.
Available Commands:
vllm bench {latency, serve, throughput}
latency
Benchmark the latency of a single batch of requests.
Example:
vllm bench latency \
--model meta-llama/Llama-3.2-1B-Instruct \
--input-len 32 \
--output-len 1 \
--enforce-eager \
--load-format dummy
serve
Benchmark the online serving throughput.
Example:
vllm bench serve \
--model meta-llama/Llama-3.2-1B-Instruct \
--host server-host \
--port server-port \
--random-input-len 32 \
--random-output-len 4 \
--num-prompts 5
throughput
Benchmark offline inference throughput.
Example:
vllm bench throughput \
--model meta-llama/Llama-3.2-1B-Instruct \
--input-len 32 \
--output-len 1 \
--enforce-eager \
--load-format dummy
collect-env
Start collecting environment information.
vllm collect-env
run-batch
Run batch prompts and write results to file.
Examples:
# Running with a local file
vllm run-batch \
-i offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
# Using remote file
vllm run-batch \
-i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
More Help
For detailed options of any subcommand, use:
vllm <subcommand> --help