mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:54:56 +08:00
Signed-off-by: Grace Ho <grho@nvidia.com> Signed-off-by: Grace Ho <146482179+gracehonv@users.noreply.github.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
314 lines
12 KiB
Python
Executable File
314 lines
12 KiB
Python
Executable File
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""
|
|
This generates gpu kernel analysis output from nsys rep. Will call nsys
|
|
stats -r cuda_gpu_kern_trace, get non-overlapped gpu cycles, then generate
|
|
csv and html output for analysis
|
|
"""
|
|
import argparse
|
|
import logging
|
|
import os
|
|
|
|
import regex as re
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# helper data class for annotating kernels
|
|
def load_engine_model():
|
|
""" returns engine_model built from all json files in the current dir """
|
|
import glob
|
|
import json
|
|
engine_model = {}
|
|
|
|
json_files = glob.glob(
|
|
os.path.join(os.path.dirname(__file__) or ".", "*.json"))
|
|
for fname in json_files:
|
|
with open(fname, encoding="utf-8") as f:
|
|
engine_model.update(json.load(f))
|
|
return engine_model
|
|
|
|
|
|
class GPUTrace2Graph:
|
|
"""
|
|
Parses output of nsys report, generates csv and bar chart output
|
|
"""
|
|
|
|
def __init__(self):
|
|
import pandas as pd # avoid importing till needed
|
|
self.pd = pd
|
|
self.pd.options.mode.copy_on_write = True
|
|
|
|
# helper functions for generating trace->summary csvs
|
|
def gen_nonoverlapped_sum_from_gputrace(self, in_file, out_file):
|
|
logger.info('loading %s', in_file)
|
|
df = self.pd.read_csv(
|
|
in_file,
|
|
usecols=['Start (ns)', 'Duration (ns)', 'Device', 'Strm', 'Name'])
|
|
df['End (ns)'] = df['Start (ns)'] + df['Duration (ns)']
|
|
df = self.sum_non_overlapping_intervals(df)
|
|
# get ready to print table with elapsed times per kernel
|
|
df['Instances'] = 1
|
|
df_sum = df.groupby('Name', as_index=False).agg({
|
|
'Elapsed Time (ns)': 'sum',
|
|
'Duration (ns)': 'sum',
|
|
'Instances': 'size'
|
|
})
|
|
|
|
# generate csv
|
|
df_sum['Total Time (sec)'] = df_sum['Duration (ns)'] / 1e9
|
|
df_sum['Elapsed Time (sec)'] = df_sum['Elapsed Time (ns)'] / 1e9
|
|
df_sum = df_sum.sort_values(by='Elapsed Time (sec)', ascending=False)
|
|
df_sum[['Elapsed Time (sec)', 'Total Time (sec)', 'Instances',
|
|
'Name']].to_csv(out_file, index=False)
|
|
|
|
def sum_non_overlapping_intervals(self, df):
|
|
"""
|
|
returns new sorted df with Elapsed Time (ns) column using
|
|
vectorized operations
|
|
"""
|
|
logger.info("sorting %s trace records by start time", str(df.shape))
|
|
|
|
# Sort by start time and reset index
|
|
df = df.sort_values(by='Start (ns)').reset_index(drop=True)
|
|
|
|
# Initialize elapsed time as duration
|
|
df['Elapsed Time (ns)'] = df['Duration (ns)']
|
|
|
|
# Get numpy arrays for faster operations
|
|
starts = df['Start (ns)'].values
|
|
ends = df['End (ns)'].values
|
|
|
|
# Keep track of current interval end
|
|
current_end = ends[0]
|
|
display_units = int(len(df) / 100)
|
|
# Update current_end for overlapping intervals
|
|
for i in range(1, len(df)):
|
|
if i % display_units == 0:
|
|
print(f'processing trace: {int(i/len(df) * 100)} %', end="\r")
|
|
if starts[i] <= current_end:
|
|
if ends[i] > current_end:
|
|
# Partial overlap
|
|
df.iloc[i, df.columns.get_loc('Elapsed Time (ns)'
|
|
)] = ends[i] - current_end
|
|
current_end = ends[i]
|
|
else:
|
|
# Complete overlap
|
|
df.iloc[i, df.columns.get_loc('Elapsed Time (ns)')] = 0
|
|
else:
|
|
# No overlap
|
|
current_end = ends[i]
|
|
|
|
return df
|
|
|
|
# functions for generating html files
|
|
def make_html(self, df, output_dir, title):
|
|
""" make html graph from df """
|
|
import plotly.express as px
|
|
if df.empty:
|
|
return
|
|
output_name = output_dir + '/result'
|
|
if not title:
|
|
title = 'Model_Engine'
|
|
x = 'Model_Engine'
|
|
y = 'Elapsed Time (sec)'
|
|
color = 'Category'
|
|
""" generate kernel mapping table """
|
|
# Sort Model_Engine categories by last field after underscore
|
|
df['Model_Engine'] = self.pd.Categorical(
|
|
df['Model_Engine'],
|
|
sorted(df['Model_Engine'].unique(),
|
|
key=lambda x: x.split('_')[-1]))
|
|
df[['Model_Engine', color, 'Instances', 'Name',
|
|
y]].sort_values(by=color).to_csv(f'{output_name}.csv', index=False)
|
|
graph = px.histogram(df.round(2),
|
|
x=x,
|
|
y=y,
|
|
title=(f'{y} for {title}'),
|
|
color=color,
|
|
text_auto=True)
|
|
# wrap x axis labels
|
|
graph.update_xaxes(automargin=True)
|
|
graph.write_html(f'{output_name}.html')
|
|
"""
|
|
Generate data table with columns per Model_Engine into result.html
|
|
"""
|
|
pivot_df = df.pivot_table(values='Elapsed Time (sec)',
|
|
index='Category',
|
|
columns='Model_Engine',
|
|
aggfunc='sum',
|
|
observed=False).round(2)
|
|
# Add sum row at bottom
|
|
pivot_df.loc['total_elapsed_sec'] = pivot_df.sum()
|
|
pivot_df.fillna('').to_html('temp.html')
|
|
with (open(f'{output_name}.html', 'a', encoding='utf-8') as
|
|
outfile, open('temp.html', encoding='utf-8') as infile):
|
|
outfile.write(infile.read())
|
|
os.remove('temp.html')
|
|
|
|
print(f'Finished generating: \n'
|
|
f' {output_name}.html for stack bar chart \n'
|
|
f' {output_name}.csv for Kernel-Category mapping')
|
|
|
|
def anno_gpu_kernname(self, df, mapping):
|
|
""" add "Category" column """
|
|
|
|
def anno_gpu_kernname_helper(name):
|
|
for kern_name, val in mapping.items():
|
|
if re.search(kern_name, name):
|
|
return val
|
|
|
|
df['Category'] = df['Name'].apply(anno_gpu_kernname_helper)
|
|
|
|
def make_nongpu_row(self, df, nongpu_sec):
|
|
""" this will append non-gpu time entry at end of df """
|
|
nongpu_row = self.pd.DataFrame([df.iloc[-1]])
|
|
nongpu_row['Category'] = nongpu_row['Name'] = 'CPU(non-GPU)'
|
|
nongpu_row['Instances'] = 1
|
|
nongpu_row['Elapsed Time (sec)'] = nongpu_sec
|
|
return (nongpu_row)
|
|
|
|
def is_valid_file(self, base_file):
|
|
""" asserts if base_file is non-existent or is empty """
|
|
assert os.path.isfile(base_file) and os.path.getsize(base_file) > 0, \
|
|
f"{base_file} doesn't exist or is empty"
|
|
|
|
def should_gen_file(self, new_file, base_file):
|
|
""" figure out if new file should be generated from base_file """
|
|
self.is_valid_file(base_file)
|
|
if (os.path.exists(new_file)
|
|
and (os.path.getmtime(new_file) > os.path.getmtime(base_file))
|
|
and (os.path.getsize(base_file) > 0)):
|
|
logger.info('reusing %s', new_file)
|
|
return False
|
|
else:
|
|
logger.info('generating %s', new_file)
|
|
return True
|
|
|
|
def gen_sum_file(self, file, nsys_cmd):
|
|
"""
|
|
generates sum file from nsys trace with times per kernel and
|
|
returns the name of the sum file
|
|
"""
|
|
import subprocess
|
|
file_dir = os.path.dirname(file)
|
|
file_name = os.path.basename(file)
|
|
|
|
if not file_dir:
|
|
file_dir = '.'
|
|
# Walk through trace and get the total non-overlapped time
|
|
nsys_stats_file = f'{file_dir}/{file_name}_cuda_gpu_trace.csv'
|
|
sum_file = f'{file_dir}/{file_name}_cuda_gpu_kernel_tracesum.csv'
|
|
if self.should_gen_file(nsys_stats_file, file):
|
|
cmd = [
|
|
nsys_cmd, 'stats', '-r', 'cuda_gpu_trace', file, '-o',
|
|
f'{file_dir}/{file_name}'
|
|
]
|
|
cmd_str = ' '.join(cmd)
|
|
logger.info('+ %s', cmd_str)
|
|
# estimate time based on calibrated 240M/min
|
|
file_size_mb = os.path.getsize(file) / 1e6
|
|
logger.info(
|
|
'nsys stats for %.2f MB file expected to take %.2f min',
|
|
file_size_mb, file_size_mb / 240)
|
|
try:
|
|
subprocess.run(cmd, check=True)
|
|
except Exception:
|
|
logger.error("%s failed; Use --nsys_cmd to specify nsys path",
|
|
cmd_str)
|
|
exit(1)
|
|
logger.info('generating non-overalapped sum %s', sum_file)
|
|
self.gen_nonoverlapped_sum_from_gputrace(nsys_stats_file, sum_file)
|
|
self.is_valid_file(sum_file)
|
|
logger.info('Finished generating %s', sum_file)
|
|
return sum_file
|
|
|
|
def gen_graph(self, in_file, out_dir, title, nsys_cmd, engine_model):
|
|
""" generates graph and csv file from in_file into out_dir """
|
|
# Initialize an empty DataFrame to store combined data
|
|
combined_df = self.pd.DataFrame()
|
|
for idx, (file, engine, model, total_sec) in enumerate(in_file):
|
|
file_dir = os.path.dirname(file)
|
|
file_name = os.path.basename(file)
|
|
if not file_dir:
|
|
file_dir = '.'
|
|
sum_file = self.gen_sum_file(file, nsys_cmd)
|
|
# read kernel summary file
|
|
df = self.pd.read_csv(sum_file)
|
|
# annotate kernel to their categories
|
|
assert engine_model.get(engine), f'engine {engine} unknown'
|
|
assert engine_model[engine].get(model), f'model {model} unknown'
|
|
# remove nsys-rep from file_name for shorter x-label
|
|
file_name = file_name.replace('.nsys-rep', '')
|
|
df['Model_Engine'] = f'{model}_{engine}_{file_name}_{idx}'
|
|
self.anno_gpu_kernname(df, engine_model[engine][model])
|
|
# patch in non-gpu time
|
|
gpu_sec = round(df['Elapsed Time (sec)'].sum(), 1)
|
|
total_sec = round(float(total_sec), 1)
|
|
if total_sec < gpu_sec:
|
|
logger.warning(
|
|
"Elapsed sec %.2f < GPU sec %.2f resetting Elapsed sec ",
|
|
total_sec,
|
|
gpu_sec,
|
|
)
|
|
total_sec = gpu_sec
|
|
nongpu_row = self.make_nongpu_row(df, total_sec - gpu_sec)
|
|
df = self.pd.concat([df, nongpu_row], ignore_index=True)
|
|
combined_df = self.pd.concat([combined_df, df], ignore_index=True)
|
|
if out_dir is None:
|
|
out_dir = '.'
|
|
else:
|
|
os.makedirs(out_dir, exist_ok=True)
|
|
# generate html file
|
|
self.make_html(combined_df, out_dir, title)
|
|
|
|
|
|
def parse_tuple(s):
|
|
return tuple(s.split(','))
|
|
|
|
|
|
def main():
|
|
logging.basicConfig(format=('%(asctime)s - %(levelname)s - %(message)s'),
|
|
level=logging.INFO)
|
|
parser = argparse.ArgumentParser(
|
|
description=(
|
|
'Process nsys rep and generate kernel non-overlapped cycles. \n'
|
|
'Example:\n'
|
|
"gputrc2graph.py --in_file d1.nsys-rep,vllm,llama,100 \n"
|
|
"d2.nsys-rep,vllm,gpt-oss,102 "
|
|
"--out_dir results/ --title \"Model=gpt-oss vLLM chart\""),
|
|
formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
|
|
# load supported engine_model
|
|
engine_model_supported = load_engine_model()
|
|
# Get a string representation of supported engine/model combinations
|
|
engine_model_supported_str = ', '.join(
|
|
f"{engine}:[{', '.join(models.keys())}]"
|
|
for engine, models in engine_model_supported.items())
|
|
parser.add_argument(
|
|
'--in_file',
|
|
type=parse_tuple,
|
|
nargs='+',
|
|
help=(
|
|
'list of (nsys-rep, engine, model, elapsed_nonprofiled_sec) '
|
|
'separated by space. Elapsed_nonprofiled_sec is runtime without '
|
|
'profiling used to calculate non-gpu time. Specify 0 to use '
|
|
'elapsed time from nsys-rep but that might inflate non-gpu time. '
|
|
f'Available engine:[model] are: {engine_model_supported_str} '
|
|
f'Example: --infile d1.nsys-rep,vllm,llama,100 '
|
|
'd2.nsys-rep,vllm,gpt-oss,102'),
|
|
required=True)
|
|
parser.add_argument('--out_dir', help=('output dir for result.csv/html'))
|
|
parser.add_argument('--title', help=('title for html chart'))
|
|
parser.add_argument('--nsys_cmd',
|
|
help=('nsys cmd, e.g. /usr/bin/nsys, Default: nsys'),
|
|
default="nsys")
|
|
args = parser.parse_args()
|
|
gputrace = GPUTrace2Graph()
|
|
gputrace.gen_graph(args.in_file, args.out_dir, args.title, args.nsys_cmd,
|
|
engine_model_supported)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|