vllm/tests/entrypoints/test_chat_utils.py
Cyrus Leung 86ae693f20
[Deprecation][2/N] Replace --task with --runner and --convert (#21470)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-27 19:42:40 -07:00

1520 lines
42 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import warnings
from collections.abc import Mapping
from typing import Literal, Optional
import pytest
from mistral_common.tokens.tokenizers.base import (SpecialTokenPolicy,
SpecialTokens)
from mistral_common.tokens.tokenizers.tekken import (SpecialTokenInfo,
Tekkenizer)
from vllm.assets.audio import AudioAsset
from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.config import ModelConfig
from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template,
parse_chat_messages,
parse_chat_messages_futures,
resolve_chat_template_content_format,
resolve_hf_chat_template)
from vllm.entrypoints.llm import apply_hf_chat_template
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.utils import (encode_audio_base64, encode_image_base64,
encode_video_base64)
from vllm.transformers_utils.tokenizer_group import TokenizerGroup
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
from ..models.registry import HF_EXAMPLE_MODELS
from ..utils import VLLM_PATH
EXAMPLES_DIR = VLLM_PATH / "examples"
PHI3V_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
ULTRAVOX_MODEL_ID = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
QWEN2AUDIO_MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct"
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
QWEN25OMNI_MODEL_ID = "Qwen/Qwen2.5-Omni-7B"
MLLAMA_MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct"
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B"
MISTRAL_MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
@pytest.fixture(scope="function")
def phi3v_model_config():
return ModelConfig(PHI3V_MODEL_ID,
runner="generate",
trust_remote_code=True,
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="function")
def phi3v_model_config_mm_interleaved():
return ModelConfig(PHI3V_MODEL_ID,
runner="generate",
trust_remote_code=True,
interleave_mm_strings=True,
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="module")
def phi3v_tokenizer():
return TokenizerGroup(
tokenizer_id=PHI3V_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="function")
def qwen25omni_model_config_mm_interleaved():
return ModelConfig(QWEN25OMNI_MODEL_ID,
runner="generate",
interleave_mm_strings=True,
limit_mm_per_prompt={
"image": 2,
"audio": 1,
"video": 1,
})
@pytest.fixture(scope="module")
def qwen25omni_tokenizer():
return TokenizerGroup(
tokenizer_id=QWEN25OMNI_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="module")
def mllama_model_config():
return ModelConfig(MLLAMA_MODEL_ID,
runner="generate",
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="module")
def mllama_tokenizer():
return TokenizerGroup(
MLLAMA_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="function")
def mistral_model_config():
return ModelConfig(MISTRAL_MODEL_ID,
runner="generate",
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="module")
def mistral_tokenizer():
return TokenizerGroup(
tokenizer_id=MISTRAL_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="module")
def image_url():
image = ImageAsset('cherry_blossom')
base64 = encode_image_base64(image.pil_image)
return f"data:image/jpeg;base64,{base64}"
@pytest.fixture(scope="module")
def video_url():
video = VideoAsset('baby_reading', 1)
base64 = encode_video_base64(video.np_ndarrays)
return f"data:video/jpeg;base64,{base64}"
@pytest.fixture(scope="module")
def audio_url():
audio = AudioAsset('mary_had_lamb')
base64 = encode_audio_base64(*audio.audio_and_sample_rate)
return f"data:audio/ogg;base64,{base64}"
def _assert_mm_data_is_image_input(
mm_data: Optional[MultiModalDataDict],
image_count: int,
) -> None:
assert mm_data is not None
assert set(mm_data.keys()) == {"image"}
image_data = mm_data.get("image")
assert image_data is not None
assert isinstance(image_data, list) and len(image_data) == image_count
ModalityType = Literal["image", "video", "audio"]
MultiModalDataCounts = Mapping[ModalityType, int]
def _assert_mm_data_inputs(
mm_data: Optional[MultiModalDataDict],
data_count: MultiModalDataCounts,
) -> None:
assert mm_data is not None
assert set(data_count.keys()) == (set(mm_data.keys()))
for modality, n in data_count.items():
modality_data = mm_data.get(modality)
assert modality_data is not None
assert isinstance(modality_data, list) and len(modality_data) == n
def test_parse_chat_messages_single_image(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in the image?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(mm_data, 1)
def test_parse_chat_messages_empty_system(
mistral_model_config,
mistral_tokenizer,
):
# Test string format
conversation, _ = parse_chat_messages(
[{
"role": "system",
"content": ""
}, {
"role": "user",
"content": [{
"type": "text",
"text": "Who are you?"
}]
}],
mistral_model_config,
mistral_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "system",
"content": ""
}, {
"role": "user",
"content": "Who are you?"
}]
# Test openai format
conversation, _ = parse_chat_messages(
[{
"role": "system",
"content": ""
}, {
"role": "user",
"content": [{
"type": "text",
"text": "Who are you?"
}]
}],
mistral_model_config,
mistral_tokenizer,
content_format="openai",
)
assert conversation == [{
"role": "system",
"content": [{
"type": "text",
"text": ""
}]
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "Who are you?"
}]
}]
@pytest.mark.asyncio
async def test_parse_chat_messages_single_image_async(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_future = parse_chat_messages_futures(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in the image?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(await mm_future, 1)
def test_parse_chat_messages_multiple_images(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_pil",
"image_pil": ImageAsset('cherry_blossom').pil_image
}, {
"type": "text",
"text": "What's in these images?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images_async(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_future = parse_chat_messages_futures(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_pil",
"image_pil": ImageAsset('cherry_blossom').pil_image
}, {
"type": "text",
"text": "What's in these images?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?"
}]
_assert_mm_data_is_image_input(await mm_future, 2)
def test_parse_chat_messages_placeholder_already_in_prompt(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type":
"text",
"text":
"What's in <|image_1|> and how does it compare to <|image_2|>?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"What's in <|image_1|> and how does it compare to <|image_2|>?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_placeholder_one_already_in_prompt(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type":
"text",
"text":
"What's in <|image_1|> and how does it compare to the other one?" # noqa: E501
}
]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_2|>\nWhat's in <|image_1|> and how does it compare to the "
"other one?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_multiple_images_across_messages(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in this image?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What about this one?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [
{
"role": "user",
"content": "<|image_1|>\nWhat's in this image?"
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role": "user",
"content": "<|image_2|>\nWhat about this one?"
},
]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_context_text_format(
phi3v_model_config,
phi3v_tokenizer,
):
conversation, mm_data = parse_chat_messages(
[{
"role": "user",
"content": [{
"type": "text",
"text": "What's in this text?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role": "user",
"content": "What about this one?"
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="openai",
)
assert conversation == [
{
"role": "user",
"content": [{
"type": "text",
"text": "What's in this text?"
}]
},
{
"role": "assistant",
"content": [{
"type": "text",
"text": "Some stuff."
}]
},
{
"role": "user",
"content": [{
"type": "text",
"text": "What about this one?"
}]
},
]
def test_parse_chat_messages_rejects_too_many_images_in_one_message(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="coroutine 'async_get_and_parse_image' was never awaited")
with pytest.raises(
ValueError,
match="At most 2 image\\(s\\) may be provided in one request\\."
):
parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in these images?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
def test_parse_chat_messages_rejects_too_many_images_across_messages(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="coroutine 'async_get_and_parse_image' was never awaited")
with pytest.raises(
ValueError,
match="At most 2 image\\(s\\) may be provided in one request\\."
):
parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in this image?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What about these two?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
def test_parse_chat_messages_multiple_images_uncommon_input(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
"What's in these images?", {
"image_url": image_url
}, {
"image_url": image_url
}
]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_multiple_images_interleave(
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "text",
"text": "I need you to compare this image"
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "and this one"
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "Do they have differences?"
}]
}],
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
"Do they have differences?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images_interleave_async(
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages_futures(
[{
"role":
"user",
"content": [{
"type": "text",
"text": "I need you to compare this image"
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "and this one"
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "Do they have differences?"
}]
}],
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
"Do they have differences?"
}]
_assert_mm_data_is_image_input(await mm_data, 2)
def test_parse_chat_messages_multiple_images_multiple_messages_interleave(
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "Be accurate."
},
]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "What's on this image?"
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}]
}],
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"What's on this image?\n<|image_1|>\nBe accurate."
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role": "user",
"content": "What's on this image?\n<|image_2|>"
}]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_multiple_modals_multiple_messages_interleave(
qwen25omni_model_config_mm_interleaved, qwen25omni_tokenizer,
image_url, video_url, audio_url):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's on this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "Now listen to this audio"
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
}
},
]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "What's on this image?"
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "And what's in the video?"
}, {
"type": "video_url",
"video_url": {
"url": video_url
}
}]
}],
qwen25omni_model_config_mm_interleaved,
qwen25omni_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n"
"Now listen to this audio\nAudio 1: <|audio_bos|><|AUDIO|><|audio_eos|>"
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content":
"What's on this image?\n<|vision_start|><|IMAGE|><|vision_end|>\n"
"And what's in the video?\n<|vision_start|><|VIDEO|><|vision_end|>"
}]
_assert_mm_data_inputs(mm_data, {"image": 2, "video": 1, "audio": 1})
def test_parse_chat_messages_multiple_images_interleave_with_placeholders(
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
image_url,
):
with pytest.raises(
ValueError,
match=r"Found more '<|image_1|>' placeholders in input prompt "
"than actual multimodal data items."):
parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type":
"text",
"text":
"I need you to compare this image\n<|image_1|>\nand this one\n<|image_2|>\n" # noqa: E501
"Do they have differences?"
},
]
}],
phi3v_model_config_mm_interleaved,
phi3v_tokenizer,
content_format="string",
)
### Mllama currently wraps images / texts as interleaved dictionaries
def test_mllama_single_image(
mllama_model_config,
mllama_tokenizer,
image_url,
):
"""Ensures that a single image is parsed correctly mllama."""
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
'type': 'text',
'text': 'The content of this image is:'
}, {
"image_url": image_url
}]
}],
mllama_model_config,
mllama_tokenizer,
content_format="openai",
)
_assert_mm_data_is_image_input(mm_data, 1)
assert conversation == [{
'role':
'user',
'content': [{
'type': 'text',
'text': 'The content of this image is:'
}, {
'type': 'image'
}]
}]
def test_mllama_interleaved_images(
mllama_model_config,
mllama_tokenizer,
image_url,
):
"""Ensures that multiple image are parsed as interleaved dicts."""
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
{
'type': 'text',
'text': 'The content of the first image is:'
},
{
"image_url": image_url
},
{
'type': 'text',
'text': 'The content of the second image is:'
},
{
"image_url": image_url
},
]
}],
mllama_model_config,
mllama_tokenizer,
content_format="openai",
)
_assert_mm_data_is_image_input(mm_data, 2)
assert conversation == [{
'role':
'user',
'content': [{
'type': 'text',
'text': 'The content of the first image is:'
}, {
'type': 'image'
}, {
'type': 'text',
'text': 'The content of the second image is:'
}, {
'type': 'image'
}]
}]
@pytest.mark.parametrize("model", [MLLAMA_MODEL_ID])
def test_multimodal_image_parsing_matches_hf(model, image_url):
"""Checks end to end hf alignment for multimodal [image] parsing."""
def get_conversation(is_hf: bool):
img_part = {"type": "image_url", "image_url": {"url": image_url}}
if is_hf:
img_part = {'type': 'image'}
return [{
'role':
'user',
'content': [
{
'type': 'text',
'text': 'The content of the first image is:'
},
img_part,
{
'type': 'text',
'text': 'The content of the second image is:'
},
img_part,
{
'type': 'text',
'text': 'What animal is in the first image?'
},
]
}]
# Build a config for the model
model_config = ModelConfig(model,
runner="generate",
limit_mm_per_prompt={
"image": 2,
})
# Build the tokenizer group and grab the underlying tokenizer
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer = tokenizer_group.tokenizer
# Build and parse a conversation with {"type": "image"} using the tokenizer
hf_conversation = get_conversation(is_hf=True)
hf_result = tokenizer.apply_chat_template(
hf_conversation,
tokenize=False,
add_generation_prompt=True,
)
# Now parse with vLLMs chat utils & apply the template
vllm_conversation = get_conversation(is_hf=False)
conversation, _ = parse_chat_messages(
vllm_conversation,
model_config,
tokenizer_group,
content_format="openai",
)
vllm_result = apply_hf_chat_template(
tokenizer=tokenizer,
conversation=conversation,
chat_template=None,
model_config=model_config,
tools=None,
add_generation_prompt=True,
)
assert hf_result == vllm_result
@pytest.mark.parametrize(
"model",
[
QWEN2VL_MODEL_ID, # tokenizer.chat_template is of type str
HERMES_MODEL_ID, # tokenizer.chat_template is of type dict
])
@pytest.mark.parametrize("use_tools", [True, False])
def test_resolve_hf_chat_template(sample_json_schema, model, use_tools):
"""checks that chat_template is a dict type for HF models."""
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
model_info.check_available_online(on_fail="skip")
model_config = ModelConfig(
model,
tokenizer=model_info.tokenizer or model,
tokenizer_mode=model_info.tokenizer_mode,
revision=model_info.revision,
trust_remote_code=model_info.trust_remote_code,
hf_overrides=model_info.hf_overrides,
)
# Build the tokenizer group and grab the underlying tokenizer
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer = tokenizer_group.tokenizer
tools = [{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}] if use_tools else None
# Test detecting the tokenizer's chat_template
chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=tools,
model_config=model_config,
)
assert isinstance(chat_template, str)
# NOTE: Qwen2-Audio default chat template is specially defined inside
# processor class instead of using `tokenizer_config.json`
# yapf: disable
@pytest.mark.parametrize(
("model", "expected_format"),
[(PHI3V_MODEL_ID, "string"),
(QWEN2VL_MODEL_ID, "openai"),
(QWEN25VL_MODEL_ID, "openai"),
(ULTRAVOX_MODEL_ID, "string"),
(QWEN2AUDIO_MODEL_ID, "openai"),
(MLLAMA_MODEL_ID, "openai"),
(LLAMA_GUARD_MODEL_ID, "openai")],
)
# yapf: enable
def test_resolve_content_format_hf_defined(model, expected_format):
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
model_info.check_available_online(on_fail="skip")
model_config = ModelConfig(
model,
tokenizer=model_info.tokenizer or model,
tokenizer_mode=model_info.tokenizer_mode,
revision=model_info.revision,
trust_remote_code=model_info.trust_remote_code,
hf_overrides=model_info.hf_overrides,
)
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer = tokenizer_group.tokenizer
# Test detecting the tokenizer's chat_template
chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=None,
model_config=model_config,
)
assert isinstance(chat_template, str)
print("[TEXT]")
print(chat_template)
print("[AST]")
print(_try_extract_ast(chat_template))
resolved_format = resolve_chat_template_content_format(
None, # Test detecting the tokenizer's chat_template
None,
"auto",
tokenizer,
model_config=model_config,
)
assert resolved_format == expected_format
# yapf: disable
@pytest.mark.parametrize(
("model", "expected_format"),
[("Salesforce/blip2-opt-2.7b", "string"),
("facebook/chameleon-7b", "string"),
("deepseek-ai/deepseek-vl2-tiny", "string"),
("microsoft/Florence-2-base", "string"),
("adept/fuyu-8b", "string"),
("google/paligemma-3b-mix-224", "string"),
("Qwen/Qwen-VL", "string"),
("Qwen/Qwen-VL-Chat", "string")],
)
# yapf: enable
def test_resolve_content_format_fallbacks(model, expected_format):
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
model_info.check_available_online(on_fail="skip")
model_config = ModelConfig(
model,
tokenizer=model_info.tokenizer or model,
tokenizer_mode=model_info.tokenizer_mode,
revision=model_info.revision,
trust_remote_code=model_info.trust_remote_code,
hf_overrides=model_info.hf_overrides,
)
tokenizer_group = TokenizerGroup(
model_config.tokenizer,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
trust_remote_code=model_config.trust_remote_code,
)
tokenizer = tokenizer_group.tokenizer
# Test detecting the tokenizer's chat_template
chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=None,
model_config=model_config,
)
assert isinstance(chat_template, str)
print("[TEXT]")
print(chat_template)
print("[AST]")
print(_try_extract_ast(chat_template))
resolved_format = resolve_chat_template_content_format(
None, # Test detecting the tokenizer's chat_template
None,
"auto",
tokenizer,
model_config=model_config,
)
assert resolved_format == expected_format
# yapf: disable
@pytest.mark.parametrize(
("template_path", "expected_format"),
[("template_alpaca.jinja", "string"),
("template_baichuan.jinja", "string"),
("template_chatglm.jinja", "string"),
("template_chatglm2.jinja", "string"),
("template_chatml.jinja", "string"),
("template_dse_qwen2_vl.jinja", "openai"),
("template_falcon_180b.jinja", "string"),
("template_falcon.jinja", "string"),
("template_inkbot.jinja", "string"),
("template_teleflm.jinja", "string"),
("template_vlm2vec.jinja", "openai"),
("tool_chat_template_granite_20b_fc.jinja", "string"),
("tool_chat_template_hermes.jinja", "string"),
("tool_chat_template_internlm2_tool.jinja", "string"),
("tool_chat_template_llama3.1_json.jinja", "openai"),
("tool_chat_template_llama3.2_json.jinja", "openai"),
("tool_chat_template_mistral_parallel.jinja", "string"),
("tool_chat_template_mistral.jinja", "string")],
)
# yapf: enable
def test_resolve_content_format_examples(template_path, expected_format):
model_config = ModelConfig(
PHI3V_MODEL_ID, # Dummy
tokenizer=PHI3V_MODEL_ID, # Dummy
trust_remote_code=True,
)
tokenizer_group = TokenizerGroup(
PHI3V_MODEL_ID, # Dummy
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
trust_remote_code=model_config.trust_remote_code,
)
dummy_tokenizer = tokenizer_group.tokenizer
dummy_tokenizer.chat_template = None
chat_template = load_chat_template(EXAMPLES_DIR / template_path)
assert isinstance(chat_template, str)
print("[TEXT]")
print(chat_template)
print("[AST]")
print(_try_extract_ast(chat_template))
resolved_format = resolve_chat_template_content_format(
chat_template,
None,
"auto",
dummy_tokenizer,
model_config=model_config,
)
assert resolved_format == expected_format
def test_parse_chat_messages_include_thinking_chunk(mistral_model_config,
mistral_tokenizer):
messages = [{
"role":
"system",
"content": [{
"type": "text",
"text": "You are a helpful assistant."
}, {
"type":
"thinking",
"closed":
True,
"thinking":
"Only return the answer when you are confident."
}]
}, {
"role": "user",
"content": "What is 2+2?"
}, {
"role":
"assistant",
"content": [{
"type": "text",
"text": "Let me think about it."
}, {
"type": "thinking",
"closed": True,
"thinking": "2+2 = 4"
}, {
"type": "text",
"text": "The answer is 4.",
}],
}]
conversation_with_thinking, _ = parse_chat_messages(
messages,
mistral_model_config,
mistral_tokenizer,
content_format="openai",
)
expected_conversation = [{
"role":
"system",
"content": [{
"type": "text",
"text": "You are a helpful assistant."
}, {
"type": "text",
"text": "Only return the answer when you are confident."
}],
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "What is 2+2?"
}],
}, {
"role":
"assistant",
"content": [
{
"type": "text",
"text": "Let me think about it."
},
{
"type": "text",
"text": "2+2 = 4"
},
{
"type": "text",
"text": "The answer is 4."
},
]
}]
assert conversation_with_thinking == expected_conversation
def test_apply_mistral_chat_template_thinking_chunk():
# Moved import here to avoid yapf and isort conflicts
from vllm.entrypoints.chat_utils import apply_mistral_chat_template
messages = [{
"role":
"system",
"content": [{
"type": "text",
"text": "You are a helpful assistant."
}, {
"type":
"thinking",
"closed":
True,
"thinking":
"Only return the answer when you are confident."
}]
}, {
"role": "user",
"content": "What is 2+2?"
}, {
"role":
"assistant",
"content": [{
"type": "text",
"text": "Let me think about it."
}, {
"type": "thinking",
"closed": True,
"thinking": "2+2 = 4"
}, {
"type": "text",
"text": "The answer is 4.",
}],
}, {
"role": "user",
"content": "Thanks, what is 3+3?"
}]
# TODO(Julien): upon model release change to a tokenizer already configured.
# =================================================================
mistral_tokenizer = MistralTokenizer.from_pretrained(
"mistralai/Devstral-Small-2507")
assert isinstance(mistral_tokenizer.tokenizer, Tekkenizer)
# Add think special tokens to the tokenizer
mistral_tokenizer.tokenizer._all_special_tokens[35] = SpecialTokenInfo(
rank=35, is_control=True, token_str=SpecialTokens.begin_think.value)
mistral_tokenizer.tokenizer._all_special_tokens[36] = SpecialTokenInfo(
rank=36, is_control=True, token_str=SpecialTokens.end_think.value)
mistral_tokenizer.tokenizer._special_tokens_reverse_vocab = {
k: v
for k, v in
mistral_tokenizer.tokenizer._special_tokens_reverse_vocab.items()
if v not in {35, 36}
}
mistral_tokenizer.tokenizer._special_tokens_reverse_vocab[
SpecialTokens.begin_think.value] = 35
mistral_tokenizer.tokenizer._special_tokens_reverse_vocab[
SpecialTokens.end_think.value] = 36
mistral_tokenizer.instruct.BEGIN_THINK = 35
mistral_tokenizer.instruct.END_THINK = 36
# =================================================================
tokens_ids = apply_mistral_chat_template(mistral_tokenizer,
messages,
chat_template=None,
tools=None)
string_tokens = mistral_tokenizer.mistral.decode(
tokens_ids, special_token_policy=SpecialTokenPolicy.KEEP)
expected_tokens = (
r"<s>[SYSTEM_PROMPT]You are a helpful assistant.[THINK]Only return the"
r" answer when you are confident.[/THINK][/SYSTEM_PROMPT]"
r"[INST]What is 2+2?[/INST]"
r"Let me think about it.[THINK]2+2 = 4[/THINK]The answer is 4.</s>"
r"[INST]Thanks, what is 3+3?[/INST]")
assert string_tokens == expected_tokens