wang.yuqi fd1ce98cdd
[CI] Split mteb test from Language Models Test (#24634)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-09-11 06:37:51 -07:00

110 lines
4.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from tests.models.language.pooling.embed_utils import (
correctness_test_embed_models)
from tests.models.utils import (CLSPoolingEmbedModelInfo,
CLSPoolingRerankModelInfo, EmbedModelInfo,
LASTPoolingEmbedModelInfo, RerankModelInfo)
from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models
MODELS = [
########## BertModel
CLSPoolingEmbedModelInfo("thenlper/gte-large",
mteb_score=0.76807651,
architecture="BertModel",
enable_test=True),
CLSPoolingEmbedModelInfo("thenlper/gte-base",
architecture="BertModel",
enable_test=False),
CLSPoolingEmbedModelInfo("thenlper/gte-small",
architecture="BertModel",
enable_test=False),
CLSPoolingEmbedModelInfo("thenlper/gte-large-zh",
architecture="BertModel",
enable_test=False),
CLSPoolingEmbedModelInfo("thenlper/gte-base-zh",
architecture="BertModel",
enable_test=False),
CLSPoolingEmbedModelInfo("thenlper/gte-small-zh",
architecture="BertModel",
enable_test=False),
########### NewModel
# These three architectures are almost the same, but not exactly the same.
# For example,
# - whether to use token_type_embeddings
# - whether to use context expansion
# So only test one (the most widely used) model
CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-multilingual-base",
architecture="GteNewModel",
mteb_score=0.775074696,
hf_overrides={"architectures": ["GteNewModel"]},
enable_test=True),
CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-base-en-v1.5",
architecture="GteNewModel",
hf_overrides={"architectures": ["GteNewModel"]},
enable_test=False),
CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-large-en-v1.5",
architecture="GteNewModel",
hf_overrides={"architectures": ["GteNewModel"]},
enable_test=False),
########### Qwen2ForCausalLM
LASTPoolingEmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
mteb_score=0.758473459018872,
architecture="Qwen2ForCausalLM",
enable_test=True),
########## ModernBertModel
CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
mteb_score=0.748193353,
architecture="ModernBertModel",
enable_test=True),
########## Qwen3ForCausalLM
LASTPoolingEmbedModelInfo("Qwen/Qwen3-Embedding-0.6B",
mteb_score=0.771163695,
architecture="Qwen3ForCausalLM",
dtype="float32",
enable_test=True),
LASTPoolingEmbedModelInfo("Qwen/Qwen3-Embedding-4B",
architecture="Qwen3ForCausalLM",
dtype="float32",
enable_test=False),
]
RERANK_MODELS = [
CLSPoolingRerankModelInfo(
# classifier_pooling: mean
"Alibaba-NLP/gte-reranker-modernbert-base",
mteb_score=0.33386,
architecture="ModernBertForSequenceClassification",
enable_test=True),
CLSPoolingRerankModelInfo(
"Alibaba-NLP/gte-multilingual-reranker-base",
mteb_score=0.33062,
architecture="GteNewForSequenceClassification",
hf_overrides={"architectures": ["GteNewForSequenceClassification"]},
enable_test=True),
]
@pytest.mark.parametrize("model_info", MODELS)
def test_embed_models_mteb(hf_runner, vllm_runner,
model_info: EmbedModelInfo) -> None:
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
@pytest.mark.parametrize("model_info", MODELS)
def test_embed_models_correctness(hf_runner, vllm_runner,
model_info: EmbedModelInfo,
example_prompts) -> None:
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
example_prompts)
@pytest.mark.parametrize("model_info", RERANK_MODELS)
def test_rerank_models_mteb(hf_runner, vllm_runner,
model_info: RerankModelInfo) -> None:
mteb_test_rerank_models(hf_runner, vllm_runner, model_info)