vllm/vllm/model_executor/layers/lightning_attn.py
rasmith e99e467384
[CI/Build][Kernel][AMD] Move extra dim to after load in _fwd_kv_parallel in lighting_attn.py (#29132)
Signed-off-by: Randall Smith <ransmith@amd.com>
Co-authored-by: Randall Smith <ransmith@amd.com>
2025-11-21 11:53:09 -05:00

736 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from einops import rearrange
from vllm.triton_utils import tl, triton
@triton.jit
def _fwd_diag_kernel(
Q,
K,
V,
Out,
S,
b: tl.constexpr,
h: tl.constexpr,
n,
d: tl.constexpr,
e: tl.constexpr,
BLOCK: tl.constexpr,
NUM_BLOCK,
CBLOCK: tl.constexpr,
):
# This kernel computes the diagonal blocks of the attention matrix
# Each diagonal block represents attention
# where queries attend to keys in the same block
off = tl.program_id(0)
off_bh = off // NUM_BLOCK # batch-head index
off_block = off % NUM_BLOCK # block index within the sequence
off_cblock = tl.program_id(1) # sub-block index within a block
off_h = off_bh % h # head index
# Calculate base offsets for the current batch and head
qk_offset = off_bh * n * d
v_offset = off_bh * n * e
o_offset = off_bh * n * e
# Calculate offsets for the current block
block_offset = off_block * BLOCK
qk_block_offset = block_offset * d
v_block_offset = block_offset * e
o_block_offset = block_offset * e
# Calculate offsets for the current sub-block
cblock_offset = off_cblock * CBLOCK
q_cblock_offset = cblock_offset * d
o_cblock_offset = cblock_offset * e
# Calculate pointers to the query, key, value, and output tensors
Q_block_ptr = (
Q
+ qk_offset
+ qk_block_offset
+ q_cblock_offset
+ tl.arange(0, CBLOCK)[:, None] * d
+ tl.arange(0, d)[None, :]
)
K_trans_block_ptr = (
K
+ qk_offset
+ qk_block_offset
+ tl.arange(0, CBLOCK)[None, :] * d
+ tl.arange(0, d)[:, None]
)
V_block_ptr = (
V
+ v_offset
+ v_block_offset
+ tl.arange(0, CBLOCK)[:, None] * e
+ tl.arange(0, e)[None, :]
)
O_block_ptr = (
Out
+ o_offset
+ o_block_offset
+ o_cblock_offset
+ tl.arange(0, CBLOCK)[:, None] * e
+ tl.arange(0, e)[None, :]
)
# Load the decay rate for the current head
S_block_ptr = S + off_h
s = tl.load(S_block_ptr)
i = off_cblock
q_index = tl.arange(0, CBLOCK) + i * CBLOCK
# Load query values
q = tl.load(Q_block_ptr, mask=block_offset + q_index[:, None] < n, other=0.0).to(
tl.float32
)
# Initialize output accumulator
qkv = tl.zeros([CBLOCK, e], dtype=tl.float32)
# Process all sub-blocks up to and
# including the current one (causal attention)
for j in range(i + 1):
kv_index = tl.arange(0, CBLOCK) + j * CBLOCK
diff = q_index[:, None] - kv_index[None, :]
s_index = s * diff
# Apply causal mask: only attend to positions before the current one
s_index = tl.where(diff >= 0, -s_index, float("-inf"))
decay = tl.exp(s_index)
# Load key and value
k_trans = tl.load(
K_trans_block_ptr,
mask=block_offset + kv_index[None, :] < n,
other=0.0,
).to(tl.float32)
v = tl.load(
V_block_ptr,
mask=block_offset + kv_index[:, None] < n,
other=0.0,
).to(tl.float32)
# Compute attention scores and apply decay
qk = tl.dot(q, k_trans) * decay
# Compute weighted values and accumulate
qkv += tl.dot(qk, v)
# Move to the next sub-block
K_trans_block_ptr += CBLOCK * d
V_block_ptr += CBLOCK * e
# Store the result
tl.store(
O_block_ptr,
qkv.to(O_block_ptr.dtype.element_ty),
mask=block_offset + q_index[:, None] < n,
)
@triton.jit
def _fwd_kv_parallel(
K,
V,
K_decay,
KV,
b: tl.constexpr,
h: tl.constexpr,
n,
d: tl.constexpr,
e: tl.constexpr,
BLOCK: tl.constexpr,
NUM_BLOCK,
D_FBLOCK: tl.constexpr,
E_FBLOCK: tl.constexpr,
NUM_FBLOCK: tl.constexpr,
CBLOCK: tl.constexpr,
NUM_CBLOCK: tl.constexpr,
):
# This kernel computes the key-value outer
# products for each block in parallel
off_bh = tl.program_id(0) # batch-head index
off_block = tl.program_id(1) # block index
off_h = off_bh % h # head index
block_offset = off_block * BLOCK
# Calculate offsets for the current block
k_block_offset = block_offset * d
v_block_offset = block_offset * e
kv_block_offset = off_block * d * e
# Calculate base offsets for the current batch and head
k_offset = off_bh * n * d
v_offset = off_bh * n * e
kv_offset = off_bh * NUM_BLOCK * d * e
# Calculate pointers to the key, value, and key-value tensors
K_trans_block_ptr = (
K
+ k_offset
+ k_block_offset
+ tl.arange(0, CBLOCK)[None, :] * d
+ tl.arange(0, D_FBLOCK)[:, None]
)
V_block_ptr = (
V
+ v_offset
+ v_block_offset
+ tl.arange(0, CBLOCK)[:, None] * e
+ tl.arange(0, E_FBLOCK)[None, :]
)
KV_block_ptr = (
KV
+ kv_offset
+ kv_block_offset
+ tl.arange(0, D_FBLOCK)[:, None] * e
+ tl.arange(0, E_FBLOCK)[None, :]
)
# Load the decay factors for the current head and block
k_decay_ptr = K_decay + off_h * BLOCK + tl.arange(0, CBLOCK)
kv_index = tl.arange(0, CBLOCK)
# Initialize the key-value outer product accumulator
kv = tl.zeros([D_FBLOCK, E_FBLOCK], dtype=tl.float32)
# Handle the last block which might be smaller than BLOCK
split_n = n - (NUM_BLOCK - 1) * BLOCK if off_block == NUM_BLOCK - 1 else BLOCK
left_shift = tl.cdiv(split_n, CBLOCK) * CBLOCK - split_n
num_blocks = min(tl.cdiv(split_n, CBLOCK), NUM_CBLOCK)
k_decay_ptr += (NUM_CBLOCK - num_blocks) * CBLOCK
# Process all sub-blocks in the current block
for j in range(num_blocks):
left_bound = (1 - j) * left_shift
# Load key and value, handling boundary conditions
k_trans = tl.load(
K_trans_block_ptr - left_shift * d,
mask=kv_index[None, :] >= left_bound,
other=0.0,
)
v = tl.load(
V_block_ptr - left_shift * e,
mask=kv_index[:, None] >= left_bound,
other=0.0,
)
# Load decay factor and compute weighted key-value outer product
k_decay = tl.load(k_decay_ptr)
# NOTE: Need to add the extra dim here due to AMD MLIR lowering error.
# Please don't move it back until issue is resolved.
# Issue: https://github.com/ROCm/triton/issues/907
k_decay = k_decay[None, :]
kv += tl.dot(k_trans * k_decay, v)
# Move to the next sub-block
K_trans_block_ptr += CBLOCK * d
V_block_ptr += CBLOCK * e
k_decay_ptr += CBLOCK
# Store the result
tl.store(KV_block_ptr, kv.to(KV_block_ptr.dtype.element_ty))
@triton.jit
def _fwd_kv_reduce(
S,
KV,
KV_HISTORY,
b: tl.constexpr,
h: tl.constexpr,
n,
d: tl.constexpr,
e: tl.constexpr,
BLOCK: tl.constexpr,
NUM_BLOCK,
D_FBLOCK: tl.constexpr,
E_FBLOCK: tl.constexpr,
):
# This kernel reduces the key-value outer products
# across blocks and updates the KV history
off_bh = tl.program_id(0) # batch-head index
off_h = off_bh % h # head index
kv_offset = off_bh * NUM_BLOCK * d * e
# Calculate pointer to the key-value tensor
KV_block_ptr = (
KV
+ kv_offset
+ tl.arange(0, D_FBLOCK)[:, None] * e
+ tl.arange(0, E_FBLOCK)[None, :]
)
# Load the decay rate for the current head
s_ptrs = S + off_h
s = tl.load(s_ptrs)
# Calculate pointer to the key-value history tensor
kv_history_offset = off_bh * d * e
KV_HISTORY_block_ptr = (
KV_HISTORY
+ kv_history_offset
+ tl.arange(0, D_FBLOCK)[:, None] * e
+ tl.arange(0, E_FBLOCK)[None, :]
)
# Load the previous key-value history
kv_pre = tl.load(KV_HISTORY_block_ptr).to(tl.float32)
# Process all blocks in reverse order to compute the prefix sum
for i in range(NUM_BLOCK):
block_size = min(n - i * BLOCK, BLOCK)
# Compute decay factor for the current block
block_decay = tl.exp(-s.to(tl.float32) * block_size)
# Load the current key-value outer product
kv_cur = tl.load(KV_block_ptr).to(tl.float32)
# Store the previous key-value history to the current block
tl.store(KV_block_ptr, kv_pre.to(KV_block_ptr.dtype.element_ty))
# Update the key-value history with the current block
kv_pre = block_decay * kv_pre + kv_cur
KV_block_ptr += d * e
# Store the updated key-value history
tl.store(KV_HISTORY_block_ptr, kv_pre)
@triton.jit
def _fwd_none_diag_kernel(
Q,
Out,
S,
KV,
b: tl.constexpr,
h: tl.constexpr,
n,
d: tl.constexpr,
e: tl.constexpr,
BLOCK: tl.constexpr,
NUM_BLOCK,
E_FBLOCK: tl.constexpr,
CBLOCK: tl.constexpr,
NUM_CBLOCK: tl.constexpr,
):
# This kernel computes the non-diagonal blocks of the attention matrix
# Each non-diagonal block represents attention
# where queries attend to keys in different blocks
off_bh = tl.program_id(0) # batch-head index
off_h = off_bh % h # head index
off_nc = tl.program_id(1)
off_n = off_nc // NUM_CBLOCK # block index
off_c = off_nc % NUM_CBLOCK # sub-block index
off_e = tl.program_id(2) # output feature block index
n_offset = off_n * BLOCK
c_offset = off_c * CBLOCK
e_offset = off_e * E_FBLOCK
block_offset = n_offset + c_offset
# Calculate offsets for the current batch, head, and block
q_offset = off_bh * n * d + (n_offset + c_offset) * d
o_offset = off_bh * n * e + (n_offset + c_offset) * e + e_offset
kv_offset = off_bh * NUM_BLOCK * d * e + off_n * d * e + e_offset
# Calculate pointers to the query, output, and key-value tensors
Q_block_ptr = (
Q + q_offset + tl.arange(0, CBLOCK)[:, None] * d + tl.arange(0, d)[None, :]
)
O_block_ptr = (
Out
+ o_offset
+ tl.arange(0, CBLOCK)[:, None] * e
+ tl.arange(0, E_FBLOCK)[None, :]
)
KV_block_ptr = (
KV + kv_offset + tl.arange(0, d)[:, None] * e + tl.arange(0, E_FBLOCK)[None, :]
)
# Load the decay rate for the current head
S_block_ptr = S + off_h
s = tl.load(S_block_ptr)
c_array = tl.arange(0, CBLOCK)
# Load the key-value outer product for the current block
kv = tl.load(KV_block_ptr).to(tl.float32)
q_index = block_offset + tl.arange(0, CBLOCK)
# Load query values
q = tl.load(Q_block_ptr, mask=q_index[:, None] < n, other=0.0).to(tl.float32)
# Compute decay factors for the current sub-block
q_decay = tl.exp(-s.to(tl.float32) * (off_c * CBLOCK + c_array[:, None]))
# Compute non-diagonal attention output
qkv_none_diag = tl.dot(q, kv) * q_decay
# Load diagonal attention output (computed by _fwd_diag_kernel)
qkv_diag = tl.load(O_block_ptr, mask=q_index[:, None] < n, other=0.0).to(tl.float32)
# Combine diagonal and non-diagonal attention outputs
qkv = qkv_diag + qkv_none_diag
# Store the result
tl.store(
O_block_ptr, qkv.to(O_block_ptr.dtype.element_ty), mask=q_index[:, None] < n
)
class _attention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, s, kv_history):
# Forward pass of the lightning attention algorithm
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
s = s.contiguous()
# Check CUDA compute capability
capability = torch.cuda.get_device_capability()
if capability[0] < 8:
raise RuntimeError(
"Flash attention currently only supported",
"for compute capability >= 80",
)
# Get input dimensions
b, h, n, d = q.shape
e = v.shape[-1]
# Initialize output tensor
o = torch.empty((b, h, n, e), dtype=q.dtype, device=q.device)
# Set block sizes
BLOCK = 256
NUM_BLOCK = triton.cdiv(n, BLOCK)
CBLOCK = 32
NUM_CBLOCK = BLOCK // CBLOCK
assert BLOCK % CBLOCK == 0, "BLOCK must be a multiple of CBLOCK"
# Compute decay factors for keys
array = torch.arange(0, BLOCK, device=q.device) + 1
k_decay = torch.exp(-s * (BLOCK - array.reshape(1, -1)))
# Step 1: Compute diagonal blocks of attention
grid = (b * h * NUM_BLOCK, NUM_CBLOCK)
_fwd_diag_kernel[grid](
q,
k,
v,
o,
s,
b,
h,
n,
d,
e,
BLOCK=BLOCK,
NUM_BLOCK=NUM_BLOCK,
CBLOCK=CBLOCK,
)
# Set feature block sizes
NUM_FBLOCK = 1
D_FBLOCK = d // NUM_FBLOCK
assert d % NUM_FBLOCK == 0
E_FBLOCK = e // NUM_FBLOCK
assert e % NUM_FBLOCK == 0
CBLOCK = 64
NUM_CBLOCK = BLOCK // CBLOCK
assert BLOCK % CBLOCK == 0, "BLOCK must be a multiple of CBLOCK"
# Step 2: Compute key-value outer products for each block in parallel
kv = torch.empty((b, h, NUM_BLOCK, d, e), dtype=torch.float32, device=q.device)
grid = (b * h, NUM_BLOCK)
_fwd_kv_parallel[grid](
k,
v,
k_decay,
kv,
b,
h,
n,
d,
e,
BLOCK=BLOCK,
NUM_BLOCK=NUM_BLOCK,
D_FBLOCK=D_FBLOCK,
E_FBLOCK=E_FBLOCK,
NUM_FBLOCK=NUM_FBLOCK,
CBLOCK=CBLOCK,
NUM_CBLOCK=NUM_CBLOCK,
)
# Step 3: Reduce key-value outer products
# across blocks and update KV history
grid = (b * h, NUM_FBLOCK)
_fwd_kv_reduce[grid](
s,
kv,
kv_history,
b,
h,
n,
d,
e,
BLOCK=BLOCK,
NUM_BLOCK=NUM_BLOCK,
D_FBLOCK=D_FBLOCK,
E_FBLOCK=E_FBLOCK,
)
# Step 4: Compute non-diagonal blocks of attention
grid = (b * h, NUM_BLOCK * NUM_CBLOCK)
_fwd_none_diag_kernel[grid](
q,
o,
s,
kv,
b,
h,
n,
d,
e,
BLOCK=BLOCK,
NUM_BLOCK=NUM_BLOCK,
E_FBLOCK=E_FBLOCK,
CBLOCK=CBLOCK,
NUM_CBLOCK=NUM_CBLOCK,
)
# Save tensors for backward pass
ctx.save_for_backward(q, k, v, s, kv)
ctx.BLOCK = BLOCK
return o, torch.cat([kv, kv_history.unsqueeze(2)], dim=2)
# Apply the lightning attention function
lightning_attention_ = _attention.apply
def lightning_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
ed: torch.Tensor,
block_size: int = 256,
kv_history: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Apply lightning attention algorithm
to compute attention efficiently.
Args:
q: Query tensor of shape [batch, heads, seq_len, dim]
k: Key tensor of shape [batch, heads, seq_len, dim]
v: Value tensor of shape [batch, heads, seq_len, dim_v]
ed: Decay rate tensor of shape [heads]
block_size: Size of blocks for block-sparse attention
kv_history: Optional key-value history from previous computations
Returns:
output: Attention output
kv: Updated key-value history
"""
d = q.shape[-1]
e = v.shape[-1]
if ed.dim() == 1:
ed = ed.view(1, -1, 1, 1)
# Split the computation into chunks for better parallelism
m = 128 if d >= 128 else 64
assert d % m == 0, f"Dimension d ({d}) must be divisible by m ({m})"
arr = [m * i for i in range(d // m + 1)]
if arr[-1] != d:
arr.append(d)
n = len(arr)
output = 0
# Initialize or clone key-value history
if kv_history is None:
kv_history = torch.zeros(
(q.shape[0], q.shape[1], d, e), dtype=torch.float32, device=q.device
)
else:
kv_history = kv_history.clone().contiguous()
# Process each chunk and accumulate results
for i in range(n - 1):
s = arr[i]
e = arr[i + 1]
q1 = q[..., s:e]
k1 = k[..., s:e]
o, kv = lightning_attention_(q1, k1, v, ed, kv_history)
output = output + o
return output, kv
@triton.jit
def _linear_attn_decode_kernel(
q_ptr,
k_ptr,
v_ptr,
kv_cache_ptr,
slope_rate,
slot_idx,
output_ptr,
D: tl.constexpr,
qkv_b_stride,
qkv_h_stride,
cache_b_stride,
cache_h_stride,
cache_d0_stride,
cache_d1_stride,
BLOCK_SIZE: tl.constexpr,
):
"""
Kernel for linear attention decoding with KV cache.
This kernel computes attention for a single token using the KV cache.
"""
pid_b = tl.program_id(0) # batch index
pid_h = tl.program_id(1) # head index
pid_d = tl.program_id(2) # dimension block index
# Load slot index for the current batch
slot_id = tl.load(slot_idx + pid_b).to(tl.int64)
# Skip if slot_id is -1 (padding)
if slot_id == -1:
return
batch_id = pid_b
head_id = pid_h
# Load decay rate for the current head
ratio = tl.load(slope_rate + pid_h)
# Calculate offsets for dimensions
qk_d_offsets = tl.arange(0, D)
v_d_offsets = tl.arange(0, BLOCK_SIZE) + pid_d * BLOCK_SIZE
cache_d_offsets = (
qk_d_offsets[:, None] * cache_d0_stride + v_d_offsets[None, :] * cache_d1_stride
)
# Calculate offsets for the current batch and head
q_offset = batch_id * qkv_b_stride + head_id * qkv_h_stride
k_offset = batch_id * qkv_b_stride + head_id * qkv_h_stride
v_offset = batch_id * qkv_b_stride + head_id * qkv_h_stride
cache_offset = slot_id * cache_b_stride + head_id * cache_h_stride
# Create masks for loading tensors
qk_mask = qk_d_offsets < D
v_mask = v_d_offsets < D
# Load query, key, and value tensors
q = tl.load(q_ptr + q_offset + qk_d_offsets, mask=qk_mask, other=0.0)
k = tl.load(k_ptr + k_offset + qk_d_offsets, mask=qk_mask, other=0.0)
v = tl.load(v_ptr + v_offset + v_d_offsets, mask=v_mask, other=0.0)
# Compute key-value outer product
kv_outer = k[:, None] * v[None, :]
kv_mask = qk_mask[:, None] & v_mask[None, :]
# Apply decay to previous KV cache
ratio = tl.exp(-ratio)
kv_ptr = kv_cache_ptr + cache_offset + cache_d_offsets
kv_cache_old = tl.load(kv_ptr, mask=kv_mask, other=0.0)
kv_outer = kv_outer + ratio * kv_cache_old
# Compute attention output
output = q[:, None].to(tl.float32) * kv_outer
output = tl.sum(output, axis=0)
# Update KV cache and store output
tl.store(kv_ptr, kv_outer, mask=kv_mask)
tl.store(output_ptr + q_offset + v_d_offsets, output, mask=v_mask)
def linear_decode_forward_triton(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
kv_caches: torch.Tensor,
slope_rate: torch.Tensor,
slot_idx: torch.Tensor,
BLOCK_SIZE: int = 32,
) -> torch.Tensor:
"""
Perform linear attention decoding using Triton kernels.
Args:
q: Query tensor of shape [B, H, 1, D]
k: Key tensor of shape [B, H, 1, D]
v: Value tensor of shape [B, H, 1, D]
kv_caches: Key-value cache tensor
slope_rate: Decay rate tensor
slot_idx: Slot indices for batches
BLOCK_SIZE: Size of blocks for processing
Returns:
output: Attention output tensor
"""
B, H, _, D = q.shape
assert k.shape == (B, H, 1, D)
assert v.shape == (B, H, 1, D)
# Initialize output tensor
output = torch.empty_like(q)
# Set grid dimensions for the kernel
grid = (B, H, D // BLOCK_SIZE)
# Calculate strides for tensors
qkv_b_stride = q.stride(0)
qkv_h_stride = q.stride(1)
cache_b_stride = kv_caches.stride(0)
cache_h_stride = kv_caches.stride(1)
cache_d0_stride = kv_caches.stride(2)
cache_d1_stride = kv_caches.stride(3)
# Launch the kernel
_linear_attn_decode_kernel[grid](
q,
k,
v,
kv_caches,
slope_rate,
slot_idx,
output,
D,
qkv_b_stride,
qkv_h_stride,
cache_b_stride,
cache_h_stride,
cache_d0_stride,
cache_d1_stride,
BLOCK_SIZE=BLOCK_SIZE,
)
# Reshape output and return
output = rearrange(output, "b h n d -> b n (h d)")
return output.squeeze(1).contiguous()