mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-11 01:35:22 +08:00
645 lines
22 KiB
Python
645 lines
22 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py
|
|
"""Inference-only Deepseek-VL2 model compatible with HuggingFace weights."""
|
|
|
|
import math
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Literal, TypeAlias
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, repeat
|
|
from transformers import BatchFeature
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.models.transformers.utils import replace_linear_class
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
MultiModalUUIDDict,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
ImageEmbeddingItems,
|
|
ImageProcessorItems,
|
|
ImageSize,
|
|
MultiModalDataItems,
|
|
)
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
MultiModalProcessingInfo,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.tokenizers import cached_tokenizer_from_config
|
|
from vllm.transformers_utils.configs.deepseek_vl2 import (
|
|
DeepseekVLV2Config,
|
|
MlpProjectorConfig,
|
|
VisionEncoderConfig,
|
|
)
|
|
from vllm.transformers_utils.processors.deepseek_vl2 import DeepseekVLV2Processor
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
from vllm.utils.torch_utils import set_default_torch_dtype
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
|
|
# The image token id may be various
|
|
_IMAGE_TOKEN = "<image>"
|
|
|
|
|
|
class DeepseekVL2ImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bnp: Batch size * number of images * number of patches
|
|
- p: Number of patches
|
|
- c: Number of channels (3)
|
|
- h: Height of each image
|
|
- w: Width of each image
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
data: Annotated[torch.Tensor, TensorShape("bnp", 3, "h", "w", dynamic_dims={"bnp"})]
|
|
images_spatial_crop: Annotated[torch.Tensor, TensorShape("bn", 2)]
|
|
|
|
|
|
class DeepseekVL2VImageEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- f: Image feature size
|
|
- h: Hidden size (must match language model backbone)
|
|
"""
|
|
|
|
type: Literal["image_embeds"]
|
|
data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("bn", "f", "h")]
|
|
|
|
|
|
DeepseekVL2ImageInputs: TypeAlias = (
|
|
DeepseekVL2ImagePixelInputs | DeepseekVL2VImageEmbeddingInputs
|
|
)
|
|
|
|
|
|
class MlpProjector(nn.Module):
|
|
def __init__(self, cfg: MlpProjectorConfig):
|
|
super().__init__()
|
|
|
|
self.cfg = cfg
|
|
self.projector_type = cfg.projector_type
|
|
assert not cfg.token_pooling, "Token pooling is not supported currently."
|
|
|
|
if self.projector_type == "downsample_mlp_gelu":
|
|
mlp_depth = cfg.depth
|
|
mlp_ratio = cfg.mlp_ratio
|
|
modules = [
|
|
nn.Linear(
|
|
cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio,
|
|
cfg.n_embed * mlp_ratio,
|
|
)
|
|
]
|
|
for _ in range(1, mlp_depth - 1):
|
|
modules.append(nn.GELU())
|
|
modules.append(
|
|
nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio)
|
|
)
|
|
modules.append(nn.GELU())
|
|
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
|
modules = nn.Sequential(*modules)
|
|
elif self.projector_type == "linear":
|
|
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unsupported projector type: {cfg.projector_type}"
|
|
)
|
|
|
|
self.layers = modules
|
|
|
|
def forward(self, x):
|
|
bs, hw, input_dim = x.shape
|
|
if self.projector_type == "downsample_mlp_gelu":
|
|
h = w = int((hw) ** 0.5)
|
|
"""compute padding"""
|
|
if h % self.cfg.downsample_ratio:
|
|
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
|
|
else:
|
|
pad = 0
|
|
x = x.reshape(bs, h, w, input_dim)
|
|
if pad > 0:
|
|
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
|
|
"""4 to 1 concat"""
|
|
x = x.permute(0, 3, 1, 2) # B, C, H, W
|
|
x = F.unfold(
|
|
x,
|
|
kernel_size=self.cfg.downsample_ratio,
|
|
stride=self.cfg.downsample_ratio,
|
|
padding=0,
|
|
) # B, C*4, HW // 4
|
|
x = x.permute(0, 2, 1)
|
|
|
|
return self.layers(x)
|
|
|
|
|
|
class DeepseekVL2ProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(DeepseekVLV2Config)
|
|
|
|
def get_hf_processor(self, **kwargs: object):
|
|
return self.ctx.get_hf_processor(DeepseekVLV2Processor, **kwargs)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"image": None}
|
|
|
|
def get_num_image_tokens(
|
|
self, *, image_width: int, image_height: int, cropping: bool = True
|
|
) -> int:
|
|
hf_processor = self.get_hf_processor()
|
|
image_size = hf_processor.image_size
|
|
patch_size = hf_processor.patch_size
|
|
downsample_ratio = hf_processor.downsample_ratio
|
|
|
|
if cropping:
|
|
best_width, best_height = hf_processor.select_best_resolution(
|
|
(image_width, image_height)
|
|
)
|
|
num_width_tiles, num_height_tiles = (
|
|
best_width // image_size,
|
|
best_height // image_size,
|
|
)
|
|
else:
|
|
num_width_tiles = num_height_tiles = 1
|
|
|
|
h = w = math.ceil((image_size // patch_size) / downsample_ratio)
|
|
|
|
global_views_tokens = h * (w + 1)
|
|
local_views_tokens = (num_height_tiles * h) * (num_width_tiles * w + 1)
|
|
return global_views_tokens + local_views_tokens + 1
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
hf_config = self.get_hf_config()
|
|
candidate_resolutions = hf_config.candidate_resolutions
|
|
height, width = max(
|
|
candidate_resolutions,
|
|
key=lambda x: self.get_num_image_tokens(
|
|
image_width=x[1], image_height=x[0]
|
|
),
|
|
)
|
|
return ImageSize(width=width, height=height)
|
|
|
|
|
|
class DeepseekVL2DummyInputsBuilder(BaseDummyInputsBuilder[DeepseekVL2ProcessingInfo]):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.image_token
|
|
|
|
return image_token * num_images
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
max_image_size = self.info.get_image_size_with_most_features()
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=max_image_size.width,
|
|
height=max_image_size.height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
class DeepseekVL2MultiModalProcessor(
|
|
BaseMultiModalProcessor[DeepseekVL2ProcessingInfo]
|
|
):
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
if not mm_data:
|
|
tokenizer = self.info.get_tokenizer()
|
|
return tokenizer(prompt, add_special_tokens=True, return_tensors="pt")
|
|
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
processed_outputs["num_patches"] = (
|
|
processed_outputs["images_spatial_crop"].prod(-1) + 1
|
|
)
|
|
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
num_patches = hf_inputs.get("num_patches", torch.empty(0))
|
|
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.flat_from_sizes("image", num_patches),
|
|
images_spatial_crop=MultiModalFieldConfig.batched("image"),
|
|
image_embeds=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
|
|
image_token_id = hf_processor.image_token_id
|
|
assert isinstance(image_token_id, int)
|
|
|
|
def get_replacement_deepseek_vl2(item_idx: int):
|
|
images = mm_items.get_items(
|
|
"image", (ImageEmbeddingItems, ImageProcessorItems)
|
|
)
|
|
|
|
if isinstance(images, ImageEmbeddingItems):
|
|
num_image_tokens = images.get_feature_size(item_idx)
|
|
else:
|
|
image_size = images.get_image_size(item_idx)
|
|
|
|
num_image_tokens = self.info.get_num_image_tokens(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
cropping=len(images) <= 2,
|
|
)
|
|
return [image_token_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[image_token_id],
|
|
replacement=get_replacement_deepseek_vl2,
|
|
)
|
|
]
|
|
|
|
def _cached_apply_hf_processor(
|
|
self,
|
|
prompt: str | list[int],
|
|
mm_data_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
mm_uuids: MultiModalUUIDDict | None = None,
|
|
) -> tuple[list[int], MultiModalProcessingInfo, bool]:
|
|
# The processor logic is different for len(images) <= 2 vs > 2
|
|
# Since the processing cache assumes that the processor output is
|
|
# invariant of how many images are passed per prompt, we only
|
|
# perform caching for the most common case
|
|
if mm_data_items.get_count("image", strict=False) > 2:
|
|
return self._apply_hf_processor(
|
|
prompt=prompt,
|
|
mm_data_items=mm_data_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
mm_uuids=mm_uuids,
|
|
)
|
|
|
|
return super()._cached_apply_hf_processor(
|
|
prompt=prompt,
|
|
mm_data_items=mm_data_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
mm_uuids=mm_uuids,
|
|
)
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
DeepseekVL2MultiModalProcessor,
|
|
info=DeepseekVL2ProcessingInfo,
|
|
dummy_inputs=DeepseekVL2DummyInputsBuilder,
|
|
)
|
|
class DeepseekVLV2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
|
|
merge_by_field_config = True
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"language.": "language_model.",
|
|
}
|
|
)
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<image>"
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config: DeepseekVLV2Config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
self.vision_config = config.vision_config
|
|
self.projector_config = config.projector_config
|
|
self.text_config = config.text_config
|
|
|
|
model_config = vllm_config.model_config
|
|
tokenizer = cached_tokenizer_from_config(model_config)
|
|
self.image_token_id: int = tokenizer.vocab[_IMAGE_TOKEN]
|
|
|
|
self.vision = self._init_vision_module(
|
|
self.vision_config, quant_config, maybe_prefix(prefix, "vision")
|
|
)
|
|
|
|
self.projector = MlpProjector(self.projector_config)
|
|
self.tile_tag = config.tile_tag
|
|
self.global_view_pos = config.global_view_pos
|
|
|
|
# special token for image token sequence format
|
|
embed_std = 1 / torch.sqrt(
|
|
torch.tensor(self.projector_config.n_embed, dtype=torch.float32)
|
|
)
|
|
if self.tile_tag == "2D":
|
|
# <|view_seperator|>, <|\n|>
|
|
self.image_newline = nn.Parameter(
|
|
torch.randn(self.projector_config.n_embed) * embed_std
|
|
)
|
|
# This is a typo in original implementation
|
|
self.view_seperator = nn.Parameter(
|
|
torch.randn(self.projector_config.n_embed) * embed_std
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
|
|
)
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=self.text_config,
|
|
prefix=maybe_prefix(prefix, "language"),
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _get_parent_and_attr(self, root: torch.nn.Module, dotted_name: str):
|
|
"""Return (parent_module, final_attr_name) for a dotted module path."""
|
|
names = dotted_name.split(".")
|
|
parent = root
|
|
for n in names[:-1]:
|
|
parent = getattr(parent, n)
|
|
return parent, names[-1]
|
|
|
|
# patch for timm ViT instance to support tensor parallel
|
|
def patch_vit_for_tp(self, vit: torch.nn.Module, quant_config: QuantizationConfig):
|
|
try:
|
|
import timm
|
|
except ImportError as e:
|
|
raise ImportError("Please install timm") from e
|
|
|
|
for name, module in vit.named_modules():
|
|
if isinstance(module, nn.Linear):
|
|
parent, attr_name = self._get_parent_and_attr(vit, name)
|
|
if isinstance(parent, timm.layers.Mlp) and attr_name == "fc1":
|
|
new_linear = replace_linear_class(
|
|
module, "colwise", quant_config, prefix=name
|
|
)
|
|
setattr(parent, attr_name, new_linear)
|
|
elif isinstance(parent, timm.layers.Mlp) and attr_name == "fc2":
|
|
new_linear = replace_linear_class(
|
|
module, "rowwise", quant_config, prefix=name
|
|
)
|
|
setattr(parent, attr_name, new_linear)
|
|
|
|
return vit
|
|
|
|
def _init_vision_module(
|
|
self,
|
|
vision_config: VisionEncoderConfig,
|
|
quant_config: QuantizationConfig | None,
|
|
prefix: str = "",
|
|
) -> nn.Module:
|
|
# TODO: refactor vision model through timm wrapper from transformers
|
|
try:
|
|
import timm
|
|
except ImportError as e:
|
|
raise ImportError("Please install timm") from e
|
|
|
|
with set_default_torch_dtype(torch.float16):
|
|
model = timm.create_model(
|
|
"vit_so400m_patch14_siglip_384.webli",
|
|
pretrained=False,
|
|
num_classes=0,
|
|
dynamic_img_size=True,
|
|
dynamic_img_pad=True,
|
|
)
|
|
|
|
if get_tensor_model_parallel_world_size() > 1:
|
|
model = self.patch_vit_for_tp(model, quant_config)
|
|
|
|
model = model.to(dtype=torch.get_default_dtype())
|
|
return model
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> DeepseekVL2ImageInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
images_spatial_crop = kwargs.pop("images_spatial_crop", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
expected_h = expected_w = self.vision_config.image_size
|
|
return DeepseekVL2ImagePixelInputs(
|
|
type="pixel_values",
|
|
data=pixel_values,
|
|
images_spatial_crop=images_spatial_crop,
|
|
resolve_bindings={
|
|
"h": expected_h,
|
|
"w": expected_w,
|
|
},
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
return DeepseekVL2VImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
data=image_embeds,
|
|
)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _pixel_values_to_embedding(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
images_spatial_crop: torch.Tensor,
|
|
) -> list[torch.Tensor]:
|
|
# [batch_all_tiles, vit_seq_len, c]
|
|
images_feature = self.vision.forward_features(pixel_values)
|
|
|
|
# [batch_all_tiles, hw, D]
|
|
images_embeds = self.projector(images_feature)
|
|
|
|
_, hw, n_dim = images_embeds.shape
|
|
h = w = int(hw**0.5)
|
|
|
|
# fill image token based on self.tile_tag & self.global_view_pos
|
|
tile_index = 0
|
|
vision_embeddings = []
|
|
for jdx in range(images_spatial_crop.size(0)):
|
|
# extra global & local features
|
|
num_width_tiles, num_height_tiles = images_spatial_crop[jdx]
|
|
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
break
|
|
num_tiles_in_image = num_width_tiles * num_height_tiles
|
|
|
|
# [hw, D]
|
|
global_features = images_embeds[tile_index]
|
|
|
|
# [num_height_tiles * num_width_tiles, hw, D]
|
|
local_features = images_embeds[
|
|
tile_index + 1 : tile_index + 1 + num_tiles_in_image
|
|
]
|
|
tile_index += num_tiles_in_image + 1
|
|
|
|
# format global and local features
|
|
# ----------------- global view add newline -----------------
|
|
# [hw, D] -> [h, w, D]
|
|
global_features = global_features.view(h, w, n_dim)
|
|
|
|
# [D] -> [h, 1, D]
|
|
new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
|
|
|
|
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
|
|
global_features = torch.cat([global_features, new_lines_in_global], dim=1)
|
|
|
|
# [h, w + 1, D] -> [h * (w + 1), D]
|
|
global_features = global_features.view(-1, n_dim)
|
|
|
|
# ----------------- local view add newline -----------------
|
|
# [num_height_tiles * num_width_tiles, h * w, D] ->
|
|
# [num_height_tiles * h, num_width_tiles * w, D]
|
|
local_features = rearrange(
|
|
local_features,
|
|
"(th tw) (h w) d -> (th h) (tw w) d",
|
|
th=num_height_tiles,
|
|
tw=num_width_tiles,
|
|
h=h,
|
|
w=w,
|
|
)
|
|
|
|
# [D] -> [num_height_tiles * h, 1, D]
|
|
new_lines_in_local = repeat(
|
|
self.image_newline, "d -> (th h) 1 d", th=num_height_tiles, h=h
|
|
)
|
|
|
|
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
local_features = torch.cat([local_features, new_lines_in_local], dim=1)
|
|
|
|
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
# --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
|
|
local_features = local_features.view(-1, n_dim)
|
|
|
|
# merge global and local tiles
|
|
if self.global_view_pos == "head":
|
|
global_local_features = torch.cat(
|
|
[
|
|
global_features,
|
|
self.view_seperator[None, :],
|
|
local_features,
|
|
]
|
|
)
|
|
else:
|
|
global_local_features = torch.cat(
|
|
[
|
|
local_features,
|
|
self.view_seperator[None, :],
|
|
global_features,
|
|
]
|
|
)
|
|
|
|
vision_embeddings.append(global_local_features)
|
|
return vision_embeddings
|
|
|
|
def _process_image_input(
|
|
self, image_input: DeepseekVL2ImageInputs
|
|
) -> torch.Tensor | list[torch.Tensor]:
|
|
if image_input["type"] == "image_embeds":
|
|
return image_input["data"]
|
|
|
|
pixel_values = image_input["data"]
|
|
images_spatial_crop = image_input["images_spatial_crop"]
|
|
|
|
return self._pixel_values_to_embedding(
|
|
pixel_values=pixel_values, images_spatial_crop=images_spatial_crop
|
|
)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
vision_embeddings = self._process_image_input(image_input)
|
|
return vision_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
):
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
autoloaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
return autoloaded_weights
|