vllm/vllm/model_executor/models/deepseek_vl2.py
Cyrus Leung 653591d5e7
[Chore] Move tokenizer initialization methods (#29793)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-12-02 13:33:37 +08:00

645 lines
22 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py
"""Inference-only Deepseek-VL2 model compatible with HuggingFace weights."""
import math
from collections.abc import Iterable, Mapping, Sequence
from typing import Annotated, Literal, TypeAlias
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import BatchFeature
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.models.transformers.utils import replace_linear_class
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalKwargsItems,
MultiModalUUIDDict,
)
from vllm.multimodal.parse import (
ImageEmbeddingItems,
ImageProcessorItems,
ImageSize,
MultiModalDataItems,
)
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
MultiModalProcessingInfo,
PromptReplacement,
PromptUpdate,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.tokenizers import cached_tokenizer_from_config
from vllm.transformers_utils.configs.deepseek_vl2 import (
DeepseekVLV2Config,
MlpProjectorConfig,
VisionEncoderConfig,
)
from vllm.transformers_utils.processors.deepseek_vl2 import DeepseekVLV2Processor
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from vllm.utils.torch_utils import set_default_torch_dtype
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from .utils import (
AutoWeightsLoader,
WeightsMapper,
init_vllm_registered_model,
maybe_prefix,
)
# The image token id may be various
_IMAGE_TOKEN = "<image>"
class DeepseekVL2ImagePixelInputs(TensorSchema):
"""
Dimensions:
- bnp: Batch size * number of images * number of patches
- p: Number of patches
- c: Number of channels (3)
- h: Height of each image
- w: Width of each image
"""
type: Literal["pixel_values"]
data: Annotated[torch.Tensor, TensorShape("bnp", 3, "h", "w", dynamic_dims={"bnp"})]
images_spatial_crop: Annotated[torch.Tensor, TensorShape("bn", 2)]
class DeepseekVL2VImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- f: Image feature size
- h: Hidden size (must match language model backbone)
"""
type: Literal["image_embeds"]
data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("bn", "f", "h")]
DeepseekVL2ImageInputs: TypeAlias = (
DeepseekVL2ImagePixelInputs | DeepseekVL2VImageEmbeddingInputs
)
class MlpProjector(nn.Module):
def __init__(self, cfg: MlpProjectorConfig):
super().__init__()
self.cfg = cfg
self.projector_type = cfg.projector_type
assert not cfg.token_pooling, "Token pooling is not supported currently."
if self.projector_type == "downsample_mlp_gelu":
mlp_depth = cfg.depth
mlp_ratio = cfg.mlp_ratio
modules = [
nn.Linear(
cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio,
cfg.n_embed * mlp_ratio,
)
]
for _ in range(1, mlp_depth - 1):
modules.append(nn.GELU())
modules.append(
nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio)
)
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
modules = nn.Sequential(*modules)
elif self.projector_type == "linear":
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
else:
raise NotImplementedError(
f"Unsupported projector type: {cfg.projector_type}"
)
self.layers = modules
def forward(self, x):
bs, hw, input_dim = x.shape
if self.projector_type == "downsample_mlp_gelu":
h = w = int((hw) ** 0.5)
"""compute padding"""
if h % self.cfg.downsample_ratio:
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
else:
pad = 0
x = x.reshape(bs, h, w, input_dim)
if pad > 0:
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
"""4 to 1 concat"""
x = x.permute(0, 3, 1, 2) # B, C, H, W
x = F.unfold(
x,
kernel_size=self.cfg.downsample_ratio,
stride=self.cfg.downsample_ratio,
padding=0,
) # B, C*4, HW // 4
x = x.permute(0, 2, 1)
return self.layers(x)
class DeepseekVL2ProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(DeepseekVLV2Config)
def get_hf_processor(self, **kwargs: object):
return self.ctx.get_hf_processor(DeepseekVLV2Processor, **kwargs)
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": None}
def get_num_image_tokens(
self, *, image_width: int, image_height: int, cropping: bool = True
) -> int:
hf_processor = self.get_hf_processor()
image_size = hf_processor.image_size
patch_size = hf_processor.patch_size
downsample_ratio = hf_processor.downsample_ratio
if cropping:
best_width, best_height = hf_processor.select_best_resolution(
(image_width, image_height)
)
num_width_tiles, num_height_tiles = (
best_width // image_size,
best_height // image_size,
)
else:
num_width_tiles = num_height_tiles = 1
h = w = math.ceil((image_size // patch_size) / downsample_ratio)
global_views_tokens = h * (w + 1)
local_views_tokens = (num_height_tiles * h) * (num_width_tiles * w + 1)
return global_views_tokens + local_views_tokens + 1
def get_image_size_with_most_features(self) -> ImageSize:
hf_config = self.get_hf_config()
candidate_resolutions = hf_config.candidate_resolutions
height, width = max(
candidate_resolutions,
key=lambda x: self.get_num_image_tokens(
image_width=x[1], image_height=x[0]
),
)
return ImageSize(width=width, height=height)
class DeepseekVL2DummyInputsBuilder(BaseDummyInputsBuilder[DeepseekVL2ProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
max_image_size = self.info.get_image_size_with_most_features()
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=max_image_size.width,
height=max_image_size.height,
num_images=num_images,
overrides=image_overrides,
)
}
class DeepseekVL2MultiModalProcessor(
BaseMultiModalProcessor[DeepseekVL2ProcessingInfo]
):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
if not mm_data:
tokenizer = self.info.get_tokenizer()
return tokenizer(prompt, add_special_tokens=True, return_tensors="pt")
processed_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
processed_outputs["num_patches"] = (
processed_outputs["images_spatial_crop"].prod(-1) + 1
)
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_patches = hf_inputs.get("num_patches", torch.empty(0))
return dict(
pixel_values=MultiModalFieldConfig.flat_from_sizes("image", num_patches),
images_spatial_crop=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token_id = hf_processor.image_token_id
assert isinstance(image_token_id, int)
def get_replacement_deepseek_vl2(item_idx: int):
images = mm_items.get_items(
"image", (ImageEmbeddingItems, ImageProcessorItems)
)
if isinstance(images, ImageEmbeddingItems):
num_image_tokens = images.get_feature_size(item_idx)
else:
image_size = images.get_image_size(item_idx)
num_image_tokens = self.info.get_num_image_tokens(
image_width=image_size.width,
image_height=image_size.height,
cropping=len(images) <= 2,
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=get_replacement_deepseek_vl2,
)
]
def _cached_apply_hf_processor(
self,
prompt: str | list[int],
mm_data_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
tokenization_kwargs: Mapping[str, object],
mm_uuids: MultiModalUUIDDict | None = None,
) -> tuple[list[int], MultiModalProcessingInfo, bool]:
# The processor logic is different for len(images) <= 2 vs > 2
# Since the processing cache assumes that the processor output is
# invariant of how many images are passed per prompt, we only
# perform caching for the most common case
if mm_data_items.get_count("image", strict=False) > 2:
return self._apply_hf_processor(
prompt=prompt,
mm_data_items=mm_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
tokenization_kwargs=tokenization_kwargs,
mm_uuids=mm_uuids,
)
return super()._cached_apply_hf_processor(
prompt=prompt,
mm_data_items=mm_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
tokenization_kwargs=tokenization_kwargs,
mm_uuids=mm_uuids,
)
@MULTIMODAL_REGISTRY.register_processor(
DeepseekVL2MultiModalProcessor,
info=DeepseekVL2ProcessingInfo,
dummy_inputs=DeepseekVL2DummyInputsBuilder,
)
class DeepseekVLV2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
merge_by_field_config = True
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"language.": "language_model.",
}
)
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return "<image>"
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: DeepseekVLV2Config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self.vision_config = config.vision_config
self.projector_config = config.projector_config
self.text_config = config.text_config
model_config = vllm_config.model_config
tokenizer = cached_tokenizer_from_config(model_config)
self.image_token_id: int = tokenizer.vocab[_IMAGE_TOKEN]
self.vision = self._init_vision_module(
self.vision_config, quant_config, maybe_prefix(prefix, "vision")
)
self.projector = MlpProjector(self.projector_config)
self.tile_tag = config.tile_tag
self.global_view_pos = config.global_view_pos
# special token for image token sequence format
embed_std = 1 / torch.sqrt(
torch.tensor(self.projector_config.n_embed, dtype=torch.float32)
)
if self.tile_tag == "2D":
# <|view_seperator|>, <|\n|>
self.image_newline = nn.Parameter(
torch.randn(self.projector_config.n_embed) * embed_std
)
# This is a typo in original implementation
self.view_seperator = nn.Parameter(
torch.randn(self.projector_config.n_embed) * embed_std
)
else:
raise ValueError(
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=self.text_config,
prefix=maybe_prefix(prefix, "language"),
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors
)
def _get_parent_and_attr(self, root: torch.nn.Module, dotted_name: str):
"""Return (parent_module, final_attr_name) for a dotted module path."""
names = dotted_name.split(".")
parent = root
for n in names[:-1]:
parent = getattr(parent, n)
return parent, names[-1]
# patch for timm ViT instance to support tensor parallel
def patch_vit_for_tp(self, vit: torch.nn.Module, quant_config: QuantizationConfig):
try:
import timm
except ImportError as e:
raise ImportError("Please install timm") from e
for name, module in vit.named_modules():
if isinstance(module, nn.Linear):
parent, attr_name = self._get_parent_and_attr(vit, name)
if isinstance(parent, timm.layers.Mlp) and attr_name == "fc1":
new_linear = replace_linear_class(
module, "colwise", quant_config, prefix=name
)
setattr(parent, attr_name, new_linear)
elif isinstance(parent, timm.layers.Mlp) and attr_name == "fc2":
new_linear = replace_linear_class(
module, "rowwise", quant_config, prefix=name
)
setattr(parent, attr_name, new_linear)
return vit
def _init_vision_module(
self,
vision_config: VisionEncoderConfig,
quant_config: QuantizationConfig | None,
prefix: str = "",
) -> nn.Module:
# TODO: refactor vision model through timm wrapper from transformers
try:
import timm
except ImportError as e:
raise ImportError("Please install timm") from e
with set_default_torch_dtype(torch.float16):
model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True,
)
if get_tensor_model_parallel_world_size() > 1:
model = self.patch_vit_for_tp(model, quant_config)
model = model.to(dtype=torch.get_default_dtype())
return model
def _parse_and_validate_image_input(
self, **kwargs: object
) -> DeepseekVL2ImageInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
images_spatial_crop = kwargs.pop("images_spatial_crop", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
expected_h = expected_w = self.vision_config.image_size
return DeepseekVL2ImagePixelInputs(
type="pixel_values",
data=pixel_values,
images_spatial_crop=images_spatial_crop,
resolve_bindings={
"h": expected_h,
"w": expected_w,
},
)
if image_embeds is not None:
return DeepseekVL2VImageEmbeddingInputs(
type="image_embeds",
data=image_embeds,
)
raise AssertionError("This line should be unreachable.")
def _pixel_values_to_embedding(
self,
pixel_values: torch.Tensor,
images_spatial_crop: torch.Tensor,
) -> list[torch.Tensor]:
# [batch_all_tiles, vit_seq_len, c]
images_feature = self.vision.forward_features(pixel_values)
# [batch_all_tiles, hw, D]
images_embeds = self.projector(images_feature)
_, hw, n_dim = images_embeds.shape
h = w = int(hw**0.5)
# fill image token based on self.tile_tag & self.global_view_pos
tile_index = 0
vision_embeddings = []
for jdx in range(images_spatial_crop.size(0)):
# extra global & local features
num_width_tiles, num_height_tiles = images_spatial_crop[jdx]
if num_width_tiles == 0 or num_height_tiles == 0:
break
num_tiles_in_image = num_width_tiles * num_height_tiles
# [hw, D]
global_features = images_embeds[tile_index]
# [num_height_tiles * num_width_tiles, hw, D]
local_features = images_embeds[
tile_index + 1 : tile_index + 1 + num_tiles_in_image
]
tile_index += num_tiles_in_image + 1
# format global and local features
# ----------------- global view add newline -----------------
# [hw, D] -> [h, w, D]
global_features = global_features.view(h, w, n_dim)
# [D] -> [h, 1, D]
new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
global_features = torch.cat([global_features, new_lines_in_global], dim=1)
# [h, w + 1, D] -> [h * (w + 1), D]
global_features = global_features.view(-1, n_dim)
# ----------------- local view add newline -----------------
# [num_height_tiles * num_width_tiles, h * w, D] ->
# [num_height_tiles * h, num_width_tiles * w, D]
local_features = rearrange(
local_features,
"(th tw) (h w) d -> (th h) (tw w) d",
th=num_height_tiles,
tw=num_width_tiles,
h=h,
w=w,
)
# [D] -> [num_height_tiles * h, 1, D]
new_lines_in_local = repeat(
self.image_newline, "d -> (th h) 1 d", th=num_height_tiles, h=h
)
# [num_height_tiles * h, num_width_tiles * w + 1, D]
local_features = torch.cat([local_features, new_lines_in_local], dim=1)
# [num_height_tiles * h, num_width_tiles * w + 1, D]
# --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
local_features = local_features.view(-1, n_dim)
# merge global and local tiles
if self.global_view_pos == "head":
global_local_features = torch.cat(
[
global_features,
self.view_seperator[None, :],
local_features,
]
)
else:
global_local_features = torch.cat(
[
local_features,
self.view_seperator[None, :],
global_features,
]
)
vision_embeddings.append(global_local_features)
return vision_embeddings
def _process_image_input(
self, image_input: DeepseekVL2ImageInputs
) -> torch.Tensor | list[torch.Tensor]:
if image_input["type"] == "image_embeds":
return image_input["data"]
pixel_values = image_input["data"]
images_spatial_crop = image_input["images_spatial_crop"]
return self._pixel_values_to_embedding(
pixel_values=pixel_values, images_spatial_crop=images_spatial_crop
)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
vision_embeddings = self._process_image_input(image_input)
return vision_embeddings
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
):
if intermediate_tensors is not None:
inputs_embeds = None
hidden_states = self.language_model(
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
autoloaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
return autoloaded_weights