vllm/csrc/sparse/cutlass/sparse_scaled_mm_c3x.cu
Dipika Sikka 60508ffda9
[Kernel]: Cutlass 2:4 Sparsity + FP8/Int8 Quant Support (#10995)
Co-authored-by: Faraz Shahsavan <faraz.shahsavan@gmail.com>
Co-authored-by: ilmarkov <markovilya197@gmail.com>
Co-authored-by: Rahul Tuli <rahul@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
2024-12-18 09:57:16 -05:00

304 lines
13 KiB
Plaintext

// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
#include "sparse_scaled_mm_c3x.cuh"
// clang-format on
using namespace cute;
using namespace vllm;
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_fp8_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(bt_meta.dtype() == torch::kUInt8);
TORCH_CHECK(bt_nzs.dtype() == torch::kFloat8_e4m3fn);
using Cutlass3xGemmDefault =
typename sm90_config_default<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM256 =
typename sm90_fp8_config_M256<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM512 =
typename sm90_fp8_config_M512<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm1 =
typename sm90_fp8_config_1<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm2 =
typename sm90_fp8_config_2<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm3 =
typename sm90_fp8_config_3<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm4 =
typename sm90_fp8_config_4<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm5 =
typename sm90_fp8_config_5<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm6 =
typename sm90_fp8_config_6<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm7 =
typename sm90_fp8_config_7<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemm8 =
typename sm90_fp8_config_8<InType, OutType, Epilogue>::Cutlass3xGemm;
uint32_t const n = bt_nzs.size(0);
uint32_t const m = a.size(0); // Batch size
uint32_t const mp2 =
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
if (mp2 <= 64) {
if (n == 28672) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm2>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (n == 4096 || n == 6144) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm1>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
} else if (mp2 <= 128) {
if (n == 4096) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm3>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (n == 28672) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm5>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (n == 6144) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm4>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
} else if (mp2 <= 256) {
if (n == 4096) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm6>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (n == 28672) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm8>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (n == 6144) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm7>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
} else {
if (n == 6144 || n == 28672) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm8>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (n == 4096) {
return cutlass_sparse_gemm_caller<Cutlass3xGemm7>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
}
// Otherwise the default heuristic
if (mp2 <= 64) {
// n in [1, 64]
return cutlass_sparse_gemm_caller<Cutlass3xGemmM64>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// n in (64, 128]
return cutlass_sparse_gemm_caller<Cutlass3xGemmM128>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 256) {
// n in (128, 256]
return cutlass_sparse_gemm_caller<Cutlass3xGemmM256>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else {
// n in (256, inf)
return cutlass_sparse_gemm_caller<Cutlass3xGemmM512>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_fp16_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::half_t>());
TORCH_CHECK(a.dtype() == torch::kFloat16);
TORCH_CHECK(bt_meta.dtype() == torch::kUInt8);
TORCH_CHECK(bt_nzs.dtype() == torch::kFloat16);
using Cutlass3xGemmDefault =
typename sm90_config_default<InType, OutType, Epilogue>::Cutlass3xGemm;
// m in (128, inf)
return cutlass_sparse_gemm_caller<Cutlass3xGemmDefault>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_bf16_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, cutlass::bfloat16_t>());
TORCH_CHECK(a.dtype() == torch::kBFloat16);
TORCH_CHECK(bt_meta.dtype() == torch::kUInt8);
TORCH_CHECK(bt_nzs.dtype() == torch::kBFloat16);
using Cutlass3xGemmDefault =
typename sm90_config_default<InType, OutType, Epilogue>::Cutlass3xGemm;
// m in (128, inf)
return cutlass_sparse_gemm_caller<Cutlass3xGemmDefault>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_gemm_sm90_int8_dispatch(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
EpilogueArgs&&... args) {
static_assert(std::is_same<InType, int8_t>());
TORCH_CHECK(a.dtype() == torch::kInt8);
TORCH_CHECK(bt_meta.dtype() == torch::kUInt8);
TORCH_CHECK(bt_nzs.dtype() == torch::kInt8);
using Cutlass3xGemmDefault =
typename sm90_config_default<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM128 =
typename sm90_int8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM64 =
typename sm90_int8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NBig =
typename sm90_int8_config_M32_NBig<InType, OutType,
Epilogue>::Cutlass3xGemm;
using Cutlass3xGemmM32NSmall =
typename sm90_int8_config_M32_NSmall<InType, OutType,
Epilogue>::Cutlass3xGemm;
uint32_t const n = out.size(1);
bool const is_small_n = n < 8192;
uint32_t const m = a.size(0);
uint32_t const mp2 =
std::max(static_cast<uint32_t>(32), next_pow_2(m)); // next power of 2
if (mp2 <= 32) {
// m in [1, 32]
if (is_small_n) {
return cutlass_sparse_gemm_caller<Cutlass3xGemmM32NSmall>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else {
return cutlass_sparse_gemm_caller<Cutlass3xGemmM32NBig>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
} else if (mp2 <= 64) {
// m in (32, 64]
return cutlass_sparse_gemm_caller<Cutlass3xGemmM64>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else if (mp2 <= 128) {
// m in (64, 128]
return cutlass_sparse_gemm_caller<Cutlass3xGemmM128>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
} else {
// m in (128, inf)
return cutlass_sparse_gemm_caller<Cutlass3xGemmDefault>(
out, a, bt_nzs, bt_meta, std::forward<EpilogueArgs>(args)...);
}
}
template <template <typename, typename, typename> typename Epilogue,
typename... EpilogueArgs>
void cutlass_scaled_sparse_mm_sm90_epilogue(torch::Tensor& out,
torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
EpilogueArgs&&... epilogue_args) {
TORCH_CHECK(bt_meta.dtype() == torch::kUInt8);
if (a.dtype() == torch::kInt8) {
TORCH_CHECK(bt_nzs.dtype() == torch::kInt8);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::bfloat16_t,
Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::half_t, Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
}
} else if (a.dtype() == torch::kFloat8_e4m3fn) {
TORCH_CHECK(bt_nzs.dtype() == torch::kFloat8_e4m3fn);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::bfloat16_t, Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
cutlass::half_t, Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
}
} else if (a.dtype() == torch::kFloat16) {
TORCH_CHECK(bt_nzs.dtype() == torch::kFloat16);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm90_fp16_dispatch<cutlass::half_t,
cutlass::bfloat16_t, Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm90_fp16_dispatch<cutlass::half_t, cutlass::half_t,
Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
}
} else { // a.dtype() == torch::kBFloat16
TORCH_CHECK(a.dtype() == torch::kBFloat16);
TORCH_CHECK(bt_nzs.dtype() == torch::kBFloat16);
if (out.dtype() == torch::kBFloat16) {
return cutlass_gemm_sm90_bf16_dispatch<cutlass::bfloat16_t,
cutlass::bfloat16_t, Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
} else {
TORCH_CHECK(out.dtype() == torch::kFloat16);
return cutlass_gemm_sm90_bf16_dispatch<cutlass::bfloat16_t,
cutlass::half_t, Epilogue>(
out, a, bt_nzs, bt_meta,
std::forward<EpilogueArgs>(epilogue_args)...);
}
}
}
void cutlass_scaled_sparse_mm_sm90(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias) {
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
if (bias) {
TORCH_CHECK(bias->dtype() == out.dtype(),
"currently bias dtype must match output dtype ", out.dtype());
return cutlass_scaled_sparse_mm_sm90_epilogue<c3x::ScaledEpilogueBias>(
out, a, bt_nzs, bt_meta, b_scales, a_scales, *bias);
} else {
return cutlass_scaled_sparse_mm_sm90_epilogue<c3x::ScaledEpilogue>(
out, a, bt_nzs, bt_meta, b_scales, a_scales);
}
}
#endif