vllm/examples/pooling/embed/embedding_requests_bytes_client.py
wang.yuqi 2e660c2434
[Frontend] Binary embedding response does not return metadata by setting encoding_format to bytes_only. (#30249)
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io>
Signed-off-by: wang.yuqi <noooop@126.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-12-08 12:01:21 +00:00

100 lines
3.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Example Python client for embedding API using vLLM API server
NOTE:
start a supported embeddings model server with `vllm serve`, e.g.
vllm serve intfloat/e5-small
"""
import argparse
import json
import requests
import torch
from vllm.utils.serial_utils import (
EMBED_DTYPE_TO_TORCH_DTYPE,
ENDIANNESS,
MetadataItem,
build_metadata_items,
decode_pooling_output,
)
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
headers = {"User-Agent": "Test Client"}
response = requests.post(api_url, headers=headers, json=prompt)
return response
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--model", type=str, default="intfloat/e5-small")
return parser.parse_args()
def main(args):
api_url = f"http://{args.host}:{args.port}/v1/embeddings"
model_name = args.model
embedding_size = 0
input_texts = [
"The best thing about vLLM is that it supports many different models",
] * 2
# The OpenAI client does not support the bytes encoding_format.
# The OpenAI client does not support the embed_dtype and endianness parameters.
for embed_dtype in EMBED_DTYPE_TO_TORCH_DTYPE:
for endianness in ENDIANNESS:
prompt = {
"model": model_name,
"input": input_texts,
"encoding_format": "bytes",
"embed_dtype": embed_dtype,
"endianness": endianness,
}
response = post_http_request(prompt=prompt, api_url=api_url)
metadata = json.loads(response.headers["metadata"])
body = response.content
items = [MetadataItem(**x) for x in metadata["data"]]
embedding = decode_pooling_output(items=items, body=body)
embedding = [x.to(torch.float32) for x in embedding]
embedding = torch.stack(embedding)
embedding_size = embedding.shape[-1]
print(embed_dtype, endianness, embedding.shape)
# The vllm server always sorts the returned embeddings in the order of input. So
# returning metadata is not necessary. You can set encoding_format to bytes_only
# to let the server not return metadata.
for embed_dtype in EMBED_DTYPE_TO_TORCH_DTYPE:
for endianness in ENDIANNESS:
prompt = {
"model": model_name,
"input": input_texts,
"encoding_format": "bytes_only",
"embed_dtype": embed_dtype,
"endianness": endianness,
}
response = post_http_request(prompt=prompt, api_url=api_url)
body = response.content
items = build_metadata_items(
embed_dtype=embed_dtype,
endianness=endianness,
shape=(embedding_size,),
n_request=len(input_texts),
)
embedding = decode_pooling_output(items=items, body=body)
embedding = [x.to(torch.float32) for x in embedding]
embedding = torch.stack(embedding)
print(embed_dtype, endianness, embedding.shape)
if __name__ == "__main__":
args = parse_args()
main(args)