vllm/vllm/v1/attention/backends/mla/cutlass_mla.py
Michael Goin 61445453df
[UX] Rename CUTLASS_MLA_VLLM_V1 to CUTLASS_MLA (#21966)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-30 20:40:34 -07:00

278 lines
9.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from typing import Optional
import torch
import vllm._custom_ops as ops
from vllm.attention.backends.abstract import (AttentionType,
is_quantized_kv_cache)
from vllm.logger import init_logger
from vllm.v1.attention.backends.mla.common import (MLACommonBackend,
MLACommonImpl,
MLACommonMetadata)
logger = init_logger(__name__)
class CutlassMLABackend(MLACommonBackend):
@staticmethod
def get_name() -> str:
return "CUTLASS_MLA"
@staticmethod
def get_impl_cls() -> type["CutlassMLAImpl"]:
return CutlassMLAImpl
class SM100Workspace:
def __init__(self, initial_workspace_size):
self._workspace_buf = torch.empty(initial_workspace_size,
device="cuda",
dtype=torch.uint8)
self._block_size = 128 # Forced to 128
# Pre-compute sm_count to avoid recomputing it. Use device 0 as a proxy
# (assumes all devices are similar)
properties = torch.cuda.get_device_properties(torch.device("cuda:0"))
self._sm_count = properties.multi_processor_count
def get_buf(self):
return self._workspace_buf
def ensure_size(self, attn_metadata: MLACommonMetadata,
num_kv_splits: int):
batch_size = attn_metadata.num_reqs
max_seq_len = attn_metadata.max_query_len
workspace_size = ops.sm100_cutlass_mla_get_workspace_size(
max_seq_len * self._block_size,
batch_size,
self._sm_count,
num_kv_splits=num_kv_splits)
if self._workspace_buf.shape[0] < workspace_size:
self._workspace_buf.resize_(workspace_size)
g_sm100_workspace = SM100Workspace(128 * 1024 * 1024) # 128MB
class CutlassMLAImpl(MLACommonImpl[MLACommonMetadata]):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
# MLA Specific Arguments
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"CutlassMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"CutlassMLAImpl")
if is_quantized_kv_cache(self.kv_cache_dtype):
raise NotImplementedError(
"CutlassMLA V1 with FP8 KV cache not yet supported")
self._use_old_cutlass_mla = False
force_old_cutlass = os.environ.get("FORCE_OLD_CUTLASS_MLA", None)
if force_old_cutlass:
logger.warning("Forcing old cutlass mla kernel")
self._use_old_cutlass_mla = True
# TODO: Currently, num_kv_splits is limited to 16 to avoid hanging
# issues. In case the code hangs, use:
# FORCE_NUM_KV_SPLITS=1
force_num_kv_splits = os.environ.get("FORCE_NUM_KV_SPLITS", None)
if force_num_kv_splits:
logger.warning("Forcing num_kv_splits to %d",
int(force_num_kv_splits))
self._num_kv_splits = int(force_num_kv_splits)
else:
self._num_kv_splits = -1 # => Auto-detect
# Share workspace buffer across all executions
self._workspace = g_sm100_workspace
def _sm100_cutlass_mla_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
seq_lens: torch.Tensor,
page_table: torch.Tensor,
workspace: torch.Tensor,
sm_scale: float,
num_kv_splits: int,
) -> torch.Tensor:
assert (q_nope.ndim == 3
), f"q_nope must be a 3D tensor, but got {q_nope.ndim}"
assert (
q_pe.ndim == 3), f"q_pe must be a 3D tensor, but got {q_pe.ndim}"
assert (
kv_c_and_k_pe_cache.ndim == 3
), "kv_c_and_k_pe_cache must be a 3D tensor, but got {}".format(
kv_c_and_k_pe_cache.ndim)
B_q, H, D_q_nope = q_nope.shape
B_q_2, H_2, D_q_pe = q_pe.shape
assert (B_q == B_q_2) and (H == H_2)
_, PAGE_SIZE, D_ckv = kv_c_and_k_pe_cache.shape
D_latent = 512
D_rope = 64
assert D_q_nope == D_latent
assert D_q_pe == D_rope
assert D_ckv == D_latent + D_rope
MAX_HEADS = 128
assert H <= MAX_HEADS, f"H must be <= {MAX_HEADS}, but got {H}"
if H < MAX_HEADS:
q_nope_padded = q_nope.new_empty((B_q, MAX_HEADS, D_q_nope))
q_nope_padded[:, :H] = q_nope
q_nope = q_nope_padded
q_pe_padded = q_pe.new_empty((B_q, MAX_HEADS, D_q_pe))
q_pe_padded[:, :H] = q_pe
q_pe = q_pe_padded
assert len(page_table.shape) == 2
B_block_table, block_num = page_table.shape
assert B_block_table == B_q
assert (block_num
> 0), f"block num must be greater than 0, got {block_num}"
assert block_num % (128 / PAGE_SIZE) == 0
# TODO(kaixih@nvidia): support fp8
assert q_nope.dtype in (
torch.float16,
torch.bfloat16,
), f"q_nope.dtype needs to be fp16 or bf16 but got {q_nope.dtype}."
assert q_nope.dtype == q_pe.dtype == kv_c_and_k_pe_cache.dtype
assert (
seq_lens.dtype == torch.int32
), f"seq_lens.dtype needs to be int32 but got {seq_lens.dtype}."
assert (
page_table.dtype == torch.int32
), f"page_table.dtype needs to be int32 but got {page_table.dtype}."
out = q_nope.new_empty((B_q, MAX_HEADS, D_latent))
ops.sm100_cutlass_mla_decode(
out,
q_nope,
q_pe,
kv_c_and_k_pe_cache,
seq_lens,
page_table,
workspace,
sm_scale,
num_kv_splits,
)
return out[:, :H].contiguous()
def _sm100_forward_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: MLACommonMetadata,
) -> torch.Tensor:
assert kv_c_and_k_pe_cache.numel() > 0
assert attn_metadata.decode is not None
if self.kv_cache_dtype.startswith("fp8"):
raise NotImplementedError("FP8 Cutlass MLA not yet supported")
# Adjust workspace size (if necessary)
self._workspace.ensure_size(attn_metadata, self._num_kv_splits)
# Run MLA
# Clone q_nope and q_pe to make sure strides computation is correct.
# TODO: Check if we really need it
q_nope = q_nope.clone()
q_pe = q_pe.clone()
o = self._sm100_cutlass_mla_decode(q_nope, q_pe, kv_c_and_k_pe_cache,
attn_metadata.decode.seq_lens,
attn_metadata.decode.block_table,
self._workspace.get_buf(),
self.scale, self._num_kv_splits)
return self._v_up_proj(o)
# TODO: Currently we leave it here only for backup in case something is
# wrong with the new SM100 CUTLASS MLA kernel
def _old_forward_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: MLACommonMetadata,
) -> torch.Tensor:
assert kv_c_and_k_pe_cache.numel() > 0
assert attn_metadata.decode is not None
if self.kv_cache_dtype.startswith("fp8"):
raise NotImplementedError("FP8 Cutlass MLA not yet supported")
B = q_nope.shape[0]
o = torch.empty((B, self.num_heads, self.kv_lora_rank),
dtype=q_nope.dtype,
device=q_nope.device)
# Run MLA
# Clone q_nope and q_pe to make sure strides computation is correct.
q_nope = q_nope.clone()
q_pe = q_pe.clone()
ops.cutlass_mla_decode(o, q_nope, q_pe, kv_c_and_k_pe_cache,
attn_metadata.decode.seq_lens,
attn_metadata.decode.block_table, self.scale)
return self._v_up_proj(o)
def _forward_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: MLACommonMetadata,
) -> torch.Tensor:
if self._use_old_cutlass_mla:
# TODO: Remove the old cutlass MLA kernel after more extensive
# testing
return self._old_forward_decode(q_nope, q_pe, kv_c_and_k_pe_cache,
attn_metadata)
return self._sm100_forward_decode(q_nope, q_pe, kv_c_and_k_pe_cache,
attn_metadata)