vllm/vllm/distributed/device_communicators/custom_all_reduce.py

271 lines
11 KiB
Python

from contextlib import contextmanager
from typing import Any, List, Optional, Union
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
import vllm.envs as envs
from vllm import _custom_ops as ops
from vllm.distributed.device_communicators.custom_all_reduce_utils import (
gpu_p2p_access_check)
from vllm.distributed.parallel_state import is_in_the_same_node
from vllm.logger import init_logger
from vllm.utils import cuda_device_count_stateless, is_full_nvlink
try:
assert ops.is_custom_op_supported("_C_custom_ar::meta_size")
custom_ar = True
except Exception:
# For AMD GPUs and CPUs
custom_ar = False
logger = init_logger(__name__)
def _can_p2p(rank: int, world_size: int) -> bool:
for i in range(world_size):
if i == rank:
continue
if not gpu_p2p_access_check(rank, i):
return False
return True
class CustomAllreduce:
_SUPPORTED_WORLD_SIZES = [2, 4, 6, 8]
# max_size: max supported allreduce size
def __init__(self,
group: ProcessGroup,
device: Union[int, str, torch.device],
max_size=8192 * 1024) -> None:
"""
Args:
group: the process group to work on. If None, it will use the
default process group.
device: the device to bind the CustomAllreduce to. If None,
it will be bind to f"cuda:{local_rank}".
It is the caller's responsibility to make sure each communicator
is bind to a unique device, and all communicators in this group
are in the same node.
"""
self._IS_CAPTURING = False
self.disabled = True
if not custom_ar:
# disable because of missing custom allreduce library
# e.g. in a non-cuda environment
return
self.group = group
assert dist.get_backend(group) != dist.Backend.NCCL, (
"CustomAllreduce should be attached to a non-NCCL group.")
if not is_in_the_same_node(group):
# No need to initialize custom allreduce for multi-node case.
logger.warning(
"Custom allreduce is disabled because this process group"
" spans across nodes.")
return
rank = dist.get_rank(group=self.group)
world_size = dist.get_world_size(group=self.group)
if world_size == 1:
# No need to initialize custom allreduce for single GPU case.
return
if world_size not in CustomAllreduce._SUPPORTED_WORLD_SIZES:
logger.warning(
"Custom allreduce is disabled due to an unsupported world"
" size: %d. Supported world sizes: %s. To silence this "
"warning, specify disable_custom_all_reduce=True explicitly.",
world_size, str(CustomAllreduce._SUPPORTED_WORLD_SIZES))
return
if isinstance(device, int):
device = torch.device(f"cuda:{device}")
elif isinstance(device, str):
device = torch.device(device)
# now `device` is a `torch.device` object
assert isinstance(device, torch.device)
self.device = device
cuda_visible_devices = envs.CUDA_VISIBLE_DEVICES
if cuda_visible_devices:
device_ids = list(map(int, cuda_visible_devices.split(",")))
else:
device_ids = list(range(cuda_device_count_stateless()))
physical_device_id = device_ids[device.index]
tensor = torch.tensor([physical_device_id],
dtype=torch.int,
device="cpu")
gather_list = [
torch.tensor([0], dtype=torch.int, device="cpu")
for _ in range(world_size)
]
dist.all_gather(gather_list, tensor, group=self.group)
physical_device_ids = [t.item() for t in gather_list]
# test nvlink first, this will filter out most of the cases
# where custom allreduce is not supported
# this checks hardware and driver support for NVLink
full_nvlink = is_full_nvlink(physical_device_ids)
if world_size > 2 and not full_nvlink:
logger.warning(
"Custom allreduce is disabled because it's not supported on"
" more than two PCIe-only GPUs. To silence this warning, "
"specify disable_custom_all_reduce=True explicitly.")
return
# test P2P capability, this checks software/cudaruntime support
# this is expensive to compute at the first time
# then we cache the result
if not _can_p2p(rank, world_size):
logger.warning(
"Custom allreduce is disabled because your platform lacks "
"GPU P2P capability or P2P test failed. To silence this "
"warning, specify disable_custom_all_reduce=True explicitly.")
return
self.disabled = False
# buffers memory are owned by this Python class and passed to C++
# meta data composes of two parts: meta data for synchronization
# (256 bytes) and a temporary buffer for storing intermediate
# allreduce results.
self.meta = torch.zeros(ops.meta_size() + max_size,
dtype=torch.uint8,
device=self.device)
# This is a pre-registered IPC buffer. In eager mode, input tensors
# are first copied into this buffer before allreduce is performed
self.buffer = torch.empty(max_size,
dtype=torch.uint8,
device=self.device)
# This is a buffer for storing the tuples of pointers pointing to
# IPC buffers from all ranks. Each registered tuple has size of
# 8*world_size bytes where world_size is at most 8. Allocating 8MB
# is enough for 131072 such tuples. The largest model I've seen only
# needs less than 10000 of registered tuples.
self.rank_data = torch.empty(8 * 1024 * 1024,
dtype=torch.uint8,
device=self.device)
self.max_size = max_size
self.rank = rank
self.world_size = world_size
handles, offsets = self._get_ipc_meta(self.meta)
self.full_nvlink = full_nvlink
self._ptr = ops.init_custom_ar(self.meta, self.rank_data, handles,
offsets, rank, self.full_nvlink)
self.register_buffer(self.buffer)
@contextmanager
def capture(self):
"""
The main responsibility of this context manager is the
`register_graph_buffers` call at the end of the context.
It records all the buffer addresses used in the CUDA graph.
"""
try:
self._IS_CAPTURING = True
yield
finally:
self._IS_CAPTURING = False
if not self.disabled:
self.register_graph_buffers()
def _get_ipc_meta(self, inp: torch.Tensor):
data = inp.untyped_storage()._share_cuda_()
shard_data = (
data[1], # ipc handle to base ptr
data[3], # offset of base ptr
)
return self._gather_ipc_meta(shard_data)
def _gather_ipc_meta(self, shard_data):
# Note: don't use `[[None]] * self.world_size` here
# because it will create a list of the same reference
all_data: List[Optional[Any]] = [[None]
for i in range(self.world_size)]
all_data[self.rank][0] = shard_data
ranks = dist.get_process_group_ranks(group=self.group)
ranks.sort()
for i, rank in enumerate(ranks):
dist.broadcast_object_list(all_data[i],
src=rank,
group=self.group,
device="cpu")
# we cannot directly use `dist.all_gather_object` here
# because it is incompatible with `gloo` backend under inference mode.
# see https://github.com/pytorch/pytorch/issues/126032 for details.
handles = []
offsets = []
for i in range(len(all_data)):
handles.append(all_data[i][0][0]) # type: ignore
offsets.append(all_data[i][0][1]) # type: ignore
return handles, offsets
def register_buffer(self, inp: torch.Tensor):
handles, offsets = self._get_ipc_meta(inp)
ops.register_buffer(self._ptr, inp, handles, offsets)
def register_graph_buffers(self):
handle, offset = ops.get_graph_buffer_ipc_meta(self._ptr)
handles, offsets = self._gather_ipc_meta((bytes(handle), offset))
logger.info("Registering %d cuda graph addresses", len(offset))
ops.register_graph_buffers(self._ptr, handles, offsets)
def should_custom_ar(self, inp: torch.Tensor):
return ops.should_custom_ar(inp, self.max_size, self.world_size,
self.full_nvlink)
# all reduce, assuming inp tensor is IPC registered with register_buffer,
# or, in the context of cuda graphs, register_graph_buffers
def all_reduce_reg(self, inp: torch.Tensor, out: torch.Tensor = None):
if out is None:
out = torch.empty_like(inp)
ops.all_reduce_reg(self._ptr, inp, out)
return out
# all reduce, assuming inp tensor is NOT IPC registered
def all_reduce_unreg(self, inp: torch.Tensor, out: torch.Tensor = None):
if out is None:
out = torch.empty_like(inp)
ops.all_reduce_unreg(self._ptr, inp, self.buffer, out)
return out
def custom_all_reduce(self, input: torch.Tensor) -> Optional[torch.Tensor]:
# when custom allreduce is disabled, this will be None
if self.disabled:
return None
if self._IS_CAPTURING:
if torch.cuda.is_current_stream_capturing():
if self.should_custom_ar(input):
return self.all_reduce_reg(input)
else:
if self.should_custom_ar(input):
# if warm up, mimic the allocation pattern
# since custom allreduce is out-of-place
return torch.empty_like(input)
else:
# note: outside of cuda graph context,
# custom allreduce incurs a cost of cudaMemcpy, which should
# be small(<=1% of overall latency) compared to the performance
# gains of using custom kernels
if self.should_custom_ar(input):
return self.all_reduce_unreg(input)
return None
def close(self):
if not self.disabled and self._ptr:
ops.dispose(self._ptr)
self._ptr = 0
def __del__(self):
self.close()