vllm/tests/quantization/test_torchao.py
Alex f6aa122698
[CI Sprint] Quantization CI Cleanup (#24130)
Signed-off-by: Alex Yun <alexyun04@gmail.com>
2025-11-18 09:21:48 -05:00

402 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import importlib.metadata
import importlib.util
import pytest
import torch
DTYPE = ["bfloat16"]
TORCHAO_AVAILABLE = importlib.util.find_spec("torchao") is not None
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
def test_pre_quantized_model(vllm_runner):
with vllm_runner(
"drisspg/fp8-opt-125m",
quantization="torchao",
dtype="bfloat16",
enforce_eager=True,
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
@pytest.mark.parametrize(
"pt_load_map_location",
[
"cuda:0",
# {"": "cuda"},
],
)
def test_opt_125m_int8wo_model_loading_with_params(vllm_runner, pt_load_map_location):
torch._dynamo.reset()
model_name = "jerryzh168/opt-125m-int8wo-partial-quant"
with vllm_runner(
model_name=model_name,
quantization="torchao",
dtype="bfloat16",
pt_load_map_location=pt_load_map_location,
enforce_eager=True,
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
def test_opt_125m_int4wo_model_per_module_quant(vllm_runner):
torch._dynamo.reset()
model_name = "jerryzh168/opt-125m-int4wo-per-module"
with vllm_runner(
model_name=model_name,
quantization="torchao",
dtype="bfloat16",
pt_load_map_location="cuda:0",
enforce_eager=True,
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
def test_qwenvl_int8wo_model_loading_with_params(vllm_runner):
torch._dynamo.reset()
model_name = "mobicham/Qwen2.5-VL-3B-Instruct_int8wo_ao"
with vllm_runner(
model_name=model_name,
quantization="torchao",
dtype="bfloat16",
pt_load_map_location="cuda:0",
enforce_eager=True,
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
@pytest.mark.skip(
reason="since torchao nightly is only compatible with torch nightly"
"currently https://github.com/pytorch/ao/issues/2919, we'll have to skip "
"torchao tests that requires newer versions (0.14.0.dev+) for now"
)
def test_opt_125m_awq_int4wo_model_loading_with_params(vllm_runner):
torch._dynamo.reset()
model_name = "torchao-testing/opt-125m-AWQConfig-Int4WeightOnlyConfig-v2-0.14.0.dev"
with vllm_runner(
model_name=model_name,
quantization="torchao",
dtype="bfloat16",
pt_load_map_location="cuda:0",
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
def test_online_quant_config_dict_json(vllm_runner):
"""Testing on the fly quantization, load_weights integration point,
with config dict serialized to json string
"""
torch._dynamo.reset()
model_name = "facebook/opt-125m"
import json
from torchao.core.config import config_to_dict
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
torchao_quant_config = Float8DynamicActivationFloat8WeightConfig(
granularity=PerRow()
)
hf_overrides = {
"quantization_config_dict_json": json.dumps(
config_to_dict(torchao_quant_config)
)
}
with vllm_runner(
model_name=model_name,
dtype="bfloat16",
pt_load_map_location="cuda:0",
quantization="torchao",
hf_overrides=hf_overrides,
enforce_eager=True,
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
def test_online_quant_config_file(vllm_runner):
"""Testing on the fly quantization, load_weights integration point,
with config file
"""
torch._dynamo.reset()
model_name = "facebook/opt-125m"
import json
from tempfile import NamedTemporaryFile
from torchao.core.config import config_to_dict
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
with NamedTemporaryFile(mode="w", delete=False) as f:
f.write(json.dumps(config_to_dict(config)))
# close the file to save it
f.close()
config_file_name = str(f.name)
hf_overrides = {"quantization_config_file": config_file_name}
with vllm_runner(
model_name=model_name,
dtype="bfloat16",
pt_load_map_location="cuda:0",
quantization="torchao",
hf_overrides=hf_overrides,
enforce_eager=True,
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
def test_reload_weights():
import json
from torchao.core.config import config_to_dict
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
from vllm import LLM, SamplingParams
torchao_quant_config = Float8DynamicActivationFloat8WeightConfig(
granularity=PerRow()
)
hf_overrides = {
"quantization_config_dict_json": json.dumps(
config_to_dict(torchao_quant_config)
)
}
llm = LLM(
model="Qwen/Qwen3-0.6B",
dtype="bfloat16",
load_format="dummy",
enforce_eager=True,
quantization="torchao",
hf_overrides=hf_overrides,
)
# Update load format from `dummy` to `auto`
llm.collective_rpc(
"update_config", args=({"load_config": {"load_format": "auto"}},)
)
# Now reload real weights inplace
llm.collective_rpc("reload_weights")
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0, top_p=0.95)
outputs = llm.generate(prompts, sampling_params)
# make sure it runs
for output in outputs:
generated_text = output.outputs[0].text
assert generated_text
# can also uncomment locally to make sure the generated
# output makes sense
# prompt = output.prompt
# print(f"Prompt: {prompt!r}")
# print(f"Output: {generated_text!r}")
# print("-" * 60)
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
@pytest.mark.skip(
reason="since torchao nightly is only compatible with torch nightly"
"currently https://github.com/pytorch/ao/issues/2919, we'll have to skip "
"torchao tests that requires newer versions (0.14.0.dev+) for now"
)
def test_opt_125m_float8_weight_only_safetensors_model_loading_with_params(vllm_runner):
torch._dynamo.reset()
model_name = (
"torchao-testing/opt-125m-Float8WeightOnlyConfig-v2-0.14.0.dev-safetensors"
)
with vllm_runner(model_name=model_name, dtype="bfloat16") as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
@pytest.mark.skip(
reason="since torchao nightly is only compatible with torch nightly"
"currently https://github.com/pytorch/ao/issues/2919, we'll have to skip "
"torchao tests that requires newer versions (0.14.0.dev+) for now"
)
def test_opt_125m_module_fqn_to_config_regex_model(vllm_runner):
torch._dynamo.reset()
model_name = "torchao-testing/opt-125m-ModuleFqnToConfig-v1-regex-0.14.0.dev"
with vllm_runner(
model_name=model_name, dtype="bfloat16", pt_load_map_location="cuda:0"
) as llm:
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
@pytest.mark.skip(
reason="since torchao nightly is only compatible with torch nightly"
"currently https://github.com/pytorch/ao/issues/2919, we'll have to skip "
"torchao tests that requires newer versions (0.14.0.dev+) for now"
)
def test_opt_125m_int4wo_model_running_preshuffled_kernel(vllm_runner, monkeypatch):
"""We load a model with Int4Tensor (plain format) linear weights
and verify that the weight is updated to Int4PreshuffledTensor
after loading in vllm
"""
from torchao.quantization import Int4PreshuffledTensor
from torchao.utils import _is_fbgemm_gpu_genai_available, is_sm_at_least_90
torch._dynamo.reset()
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
model_name = "torchao-testing/opt-125m-Int4WeightOnlyConfig-v2-0.14.0.dev"
# Note: using enforce_eager=True because the `bf16i4bf16_shuffled` doesn't
# have meta kernel implemented yet, can remove this flag after that is implemented
with vllm_runner(
model_name=model_name,
quantization="torchao",
dtype="bfloat16",
pt_load_map_location="cuda:0",
enforce_eager=True,
) as llm:
def has_int4_preshuffled_tensor_weight(model):
return isinstance(
model.model.decoder.layers[0].self_attn.qkv_proj.weight,
Int4PreshuffledTensor,
)
def get_weight_attrs(model):
weight = model.model.decoder.layers[0].self_attn.qkv_proj.weight
return [
weight.requires_grad,
weight.input_dim,
weight.output_dim,
hasattr(weight, "weight_loader"),
]
llm_engine = llm.get_llm().llm_engine
has_int4_preshuffled_tensor = any(
llm_engine.apply_model(has_int4_preshuffled_tensor_weight)
)
weight_attrs = llm_engine.apply_model(get_weight_attrs)[0]
# making sure we are using Int4PreshuffledTensor on H100 GPU, when
# fbgemm_gpu_genai
# library is installed, otherwise it should be using Int4Tensor
if _is_fbgemm_gpu_genai_available() and is_sm_at_least_90():
assert has_int4_preshuffled_tensor
else:
assert not has_int4_preshuffled_tensor
assert weight_attrs == [False, 1, 0, True]
output = llm.generate_greedy(["The capital of France is"], max_tokens=32)
assert output
@pytest.mark.skipif(not TORCHAO_AVAILABLE, reason="torchao is not available")
@pytest.mark.skip(
reason="since torchao nightly is only compatible with torch nightly"
"currently https://github.com/pytorch/ao/issues/2919, we'll have to skip "
"torchao tests that requires newer versions (0.14.0.dev+) for now"
)
def test_opt_125m_int4wo_model_running_preshuffled_kernel_online_quant(
vllm_runner, monkeypatch
):
"""We load a bf16 model and online quantize the model to int4, then verify that
the weights are updated to Int4PreshuffledTensor after online quantization
"""
from torchao.quantization import Int4PreshuffledTensor
from torchao.utils import _is_fbgemm_gpu_genai_available, is_sm_at_least_90
torch._dynamo.reset()
model_name = "facebook/opt-125m"
monkeypatch.setenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "1")
import json
from torchao.core.config import config_to_dict
from torchao.quantization import Int4WeightOnlyConfig
torchao_quant_config = Int4WeightOnlyConfig(
group_size=128, int4_packing_format="plain"
)
hf_overrides = {
"quantization_config_dict_json": json.dumps(
config_to_dict(torchao_quant_config)
)
}
# Note: using enforce_eager=True because the `bf16i4bf16_shuffled` doesn't
# have meta kernel implemented yet, can remove this flag after that is implemented
with vllm_runner(
model_name=model_name,
quantization="torchao",
dtype="bfloat16",
pt_load_map_location="cuda:0",
hf_overrides=hf_overrides,
enforce_eager=True,
) as llm:
def has_int4_preshuffled_tensor_weight(model):
return isinstance(
model.model.decoder.layers[0].self_attn.qkv_proj.weight,
Int4PreshuffledTensor,
)
def get_weight_attrs(model):
weight = model.model.decoder.layers[0].self_attn.qkv_proj.weight
return [
weight.requires_grad,
weight.input_dim,
weight.output_dim,
hasattr(weight, "weight_loader"),
]
llm_engine = llm.get_llm().llm_engine
has_int4_preshuffled_tensor = any(
llm_engine.apply_model(has_int4_preshuffled_tensor_weight)
)
weight_attrs = llm_engine.apply_model(get_weight_attrs)[0]
# making sure we are using Int4PreshuffledTensor on H100 GPU, when
# fbgemm_gpu_genai
# library is installed, otherwise it should be using Int4Tensor
if _is_fbgemm_gpu_genai_available() and is_sm_at_least_90():
assert has_int4_preshuffled_tensor
else:
assert not has_int4_preshuffled_tensor
assert weight_attrs == [False, 1, 0, True]
output = llm.generate_greedy(["The capital of France is"], max_tokens=4)
assert output
if __name__ == "__main__":
pytest.main([__file__])