vllm/tests/kernels/core/test_rotary_embedding.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

77 lines
2.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Tests for miscellaneous utilities
"""
import pytest
import torch
from tests.kernels.utils import opcheck
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding
def rotary_embedding_opcheck(
rot,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor | None = None,
):
cos_sin_cache = rot.cos_sin_cache.to(query.device, dtype=query.dtype)
# ops.rotary_embedding() is a in-place operation
# that updates the query and key tensors.
opcheck(
torch.ops._C.rotary_embedding,
(positions, query, key, rot.head_size, cos_sin_cache, rot.is_neox_style),
)
@pytest.mark.parametrize("device", ["cuda"])
@pytest.mark.parametrize("max_position", [11, 4096, 32768])
@pytest.mark.parametrize("is_neox_style", [True, False])
@pytest.mark.parametrize("rotary_dim", [32])
@pytest.mark.parametrize("head_size", [32, 108])
@pytest.mark.parametrize("seq_len", [11, 1024])
@pytest.mark.parametrize("use_key", [True, False])
@pytest.mark.parametrize("head_stride_is_contiguous", [True, False])
def test_rotary_embedding_opcheck(
dist_init,
device,
max_position,
is_neox_style,
rotary_dim,
head_size,
seq_len,
use_key,
head_stride_is_contiguous,
):
batch_size = 1
base = 10000
num_heads = 7
rot = RotaryEmbedding(
head_size, rotary_dim, max_position, base, is_neox_style, torch.float32
)
positions = torch.randint(0, max_position, (batch_size, seq_len), device=device)
head_stride = head_size + (64 if head_stride_is_contiguous else 0)
query = torch.randn(
batch_size, seq_len, num_heads, head_stride, dtype=torch.float32, device=device
)
key = torch.randn_like(query) if use_key else None
query = query[..., :head_size]
key = key[..., :head_size] if use_key else None
rotary_embedding_opcheck(rot, positions, query, key)
# if we have a contiguous head stride, test the alternate
# [..., num_heads * head_dim] shape/layout
if head_stride_is_contiguous:
rotary_embedding_opcheck(
rot,
positions,
query.flatten(start_dim=-2),
key.flatten(start_dim=-2) if use_key else None,
)