vllm/tests/entrypoints/pooling/classify/test_online_vision.py
wang.yuqi 62de4f4257
[Frontend] Resettle pooling entrypoints (#29634)
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io>
2025-12-01 15:30:43 +08:00

96 lines
2.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import pytest
import requests
from tests.utils import RemoteOpenAIServer
from vllm.entrypoints.pooling.classify.protocol import ClassificationResponse
VLM_MODEL_NAME = "muziyongshixin/Qwen2.5-VL-7B-for-VideoCls"
MAXIMUM_VIDEOS = 1
TEST_VIDEO_URL = "https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4"
HF_OVERRIDES = {
"text_config": {
"architectures": ["Qwen2_5_VLForSequenceClassification"],
},
}
@pytest.fixture(scope="module")
def server_vlm_classify():
args = [
"--runner",
"pooling",
"--max-model-len",
"5000",
"--enforce-eager",
"--limit-mm-per-prompt",
json.dumps({"video": MAXIMUM_VIDEOS}),
]
with RemoteOpenAIServer(
VLM_MODEL_NAME, args, override_hf_configs=HF_OVERRIDES
) as remote_server:
yield remote_server
@pytest.mark.parametrize("model_name", [VLM_MODEL_NAME])
def test_classify_accepts_chat_text_only(
server_vlm_classify: RemoteOpenAIServer, model_name: str
) -> None:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Please classify this text request."},
],
}
]
response = requests.post(
server_vlm_classify.url_for("classify"),
json={"model": model_name, "messages": messages},
)
response.raise_for_status()
output = ClassificationResponse.model_validate(response.json())
assert output.object == "list"
assert output.model == model_name
assert len(output.data) == 1
assert len(output.data[0].probs) == 2
assert output.usage.prompt_tokens == 22
@pytest.mark.parametrize("model_name", [VLM_MODEL_NAME])
def test_classify_accepts_chat_video_url(
server_vlm_classify: RemoteOpenAIServer, model_name: str
) -> None:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Please classify this video."},
{"type": "video_url", "video_url": {"url": TEST_VIDEO_URL}},
],
}
]
response = requests.post(
server_vlm_classify.url_for("classify"),
json={"model": model_name, "messages": messages},
)
response.raise_for_status()
output = ClassificationResponse.model_validate(response.json())
assert output.object == "list"
assert output.model == model_name
assert len(output.data) == 1
assert len(output.data[0].probs) == 2
assert output.usage.prompt_tokens == 4807