vllm/tests/v1/determinism/test_online_batch_invariance.py
2025-11-20 16:52:23 +08:00

168 lines
5.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
HTTP-based batch invariance test: send requests to a running
vLLM server and compare BS=1 vs BS=N results (tokens and per-step logprobs).
Environment variables:
- VLLM_TEST_MODEL: served model name (e.g., Qwen/Qwen3-1.7B / DeepSeek-R1)
- VLLM_TP_SIZE: tensor parallelism size (e.g., 4)
"""
import os
import random
import sys
from typing import Any
import openai
import pytest
from utils import BACKENDS, _random_prompt, resolve_model_name, skip_unsupported
from tests.utils import RemoteOpenAIServer
def _request_completion(
client: openai.OpenAI,
model: str,
prompt: Any,
sp: dict[str, Any],
max_retries: int = 3,
retry_backoff: float = 0.5,
) -> dict[str, Any] | None:
payload: dict[str, Any] = {"model": model, "prompt": prompt}
payload.update(sp)
for attempt in range(max_retries + 1):
try:
completion = client.completions.create(**payload)
# Convert to plain dict so downstream logic can keep using
# dict-style access just like with raw HTTP JSON.
return completion.model_dump()
except Exception as e: # pragma: no cover
if attempt < max_retries:
import time as _t
_t.sleep(retry_backoff * (2**attempt))
continue
sys.stderr.write(f"Error: {e}\n")
return None
return None
def _extract_tokens_and_logprobs(
choice: dict[str, Any],
) -> tuple[list[Any], list[float] | None]:
tokens: list[Any] = []
token_logprobs: list[float] | None = None
lp = choice.get("logprobs")
if lp and isinstance(lp, dict):
tokens = lp.get("token_ids") or lp.get("tokens") or []
token_logprobs = lp.get("token_logprobs", None)
return tokens, token_logprobs
def _compare_bs1_vs_bsn_single_process(
prompts: list[str],
sp_kwargs: dict[str, Any],
client: openai.OpenAI,
model_name: str,
) -> None:
# BS=1
bs1_tokens_per_prompt: list[list[Any]] = []
bs1_logprobs_per_prompt: list[list[float] | None] = []
for p in prompts:
resp = _request_completion(client, model_name, p, sp_kwargs)
if resp is None or not resp.get("choices"):
raise AssertionError("BS=1 empty/failed response")
choice = resp["choices"][0]
toks, lps = _extract_tokens_and_logprobs(choice)
if lps is None:
raise AssertionError(
"logprobs not returned; ensure server supports 'logprobs'"
)
bs1_tokens_per_prompt.append(list(toks))
bs1_logprobs_per_prompt.append(list(lps))
# BS=N
bsN_tokens_per_prompt: list[list[Any]] = [None] * len(prompts) # type: ignore[list-item]
bsN_logprobs_per_prompt: list[list[float] | None] = [None] * len(prompts)
resp = _request_completion(client, model_name, prompts, sp_kwargs)
if resp is None or not resp.get("choices"):
raise AssertionError("BS=N empty/failed batched response")
choices = resp.get("choices", [])
if len(choices) != len(prompts):
raise AssertionError(
f"BS=N choices length {len(choices)} != num prompts {len(prompts)}"
)
for idx, choice in enumerate(choices):
toks, lps = _extract_tokens_and_logprobs(choice)
if lps is None:
raise AssertionError(f"BS=N missing logprobs for prompt {idx}")
bsN_tokens_per_prompt[idx] = list(toks)
bsN_logprobs_per_prompt[idx] = list(lps)
# compare
for i, (tokens_bs1, tokens_bsN, logprobs_bs1, logprobs_bsN) in enumerate(
zip(
bs1_tokens_per_prompt,
bsN_tokens_per_prompt,
bs1_logprobs_per_prompt,
bsN_logprobs_per_prompt,
)
):
if tokens_bs1 != tokens_bsN:
raise AssertionError(
f"Prompt {i} (sampling): Different tokens sampled. "
f"BS=1 tokens: {tokens_bs1} BS=N tokens: {tokens_bsN}"
)
if logprobs_bs1 is None or logprobs_bsN is None:
raise AssertionError(f"Prompt {i}: Missing logprobs in one of the runs")
if len(logprobs_bs1) != len(logprobs_bsN):
raise AssertionError(
f"Prompt {i}: Different number of steps: "
f"{len(logprobs_bs1)} (BS=1) vs {len(logprobs_bsN)} (BS=N)."
)
for t, (a, b) in enumerate(zip(logprobs_bs1, logprobs_bsN)):
if a != b:
diff = abs(a - b)
raise AssertionError(
f"Prompt {i} Step {t}: Bitwise mismatch "
f"(abs diff={diff:.6e}). "
f"BS=1 tokens: {tokens_bs1} BS=N tokens: {tokens_bsN}"
)
@skip_unsupported
@pytest.mark.parametrize("backend", BACKENDS)
def test_logprobs_bitwise_batch_invariance_bs1_vs_bsN(
backend: str, monkeypatch: pytest.MonkeyPatch
) -> None:
random.seed(int(os.getenv("VLLM_TEST_SEED", "12345")))
# Override backend for this test (and the RemoteOpenAIServer child process).
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", backend)
model_name = resolve_model_name(backend)
prompts_all = [_random_prompt(10, 50) for _ in range(32)]
sp_kwargs: dict[str, Any] = {
"temperature": 0.6,
"top_p": 1.0,
"max_tokens": 8,
"seed": 42,
"logprobs": 5,
}
tp_size = os.getenv("VLLM_TP_SIZE", "1")
server_args: list[str] = []
if tp_size:
server_args += ["-tp", tp_size]
with RemoteOpenAIServer(model_name, server_args) as server:
client = server.get_client()
_compare_bs1_vs_bsn_single_process(
prompts=prompts_all,
sp_kwargs=sp_kwargs,
client=client,
model_name=model_name,
)