mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 15:55:48 +08:00
[WIP][Core][Refactor] move vllm/model_executor/parallel_utils into vllm/distributed and vllm/device_communicators (#3950)
273 lines
9.9 KiB
Python
273 lines
9.9 KiB
Python
# coding=utf-8
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only GPT-2 model compatible with HuggingFace weights."""
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import GPT2Config
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
LinearMethodBase,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.sampler import Sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
VocabParallelEmbedding)
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.model_executor.weight_utils import (default_weight_loader,
|
|
hf_model_weights_iterator)
|
|
from vllm.sequence import SamplerOutput
|
|
|
|
|
|
class GPT2Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPT2Config,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
total_num_heads = config.num_attention_heads
|
|
tensor_model_parallel_world_size = (
|
|
get_tensor_model_parallel_world_size())
|
|
assert total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = total_num_heads // tensor_model_parallel_world_size
|
|
self.head_dim = self.hidden_size // total_num_heads
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.c_attn = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
total_num_heads,
|
|
bias=True,
|
|
linear_method=linear_method,
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
linear_method=linear_method,
|
|
)
|
|
self.attn = Attention(self.num_heads, self.head_dim, scale=self.scale)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
attn_output, _ = self.c_proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class GPT2MLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
intermediate_size: int,
|
|
config: GPT2Config,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
self.c_fc = ColumnParallelLinear(
|
|
hidden_size,
|
|
intermediate_size,
|
|
bias=True,
|
|
linear_method=linear_method,
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=True,
|
|
linear_method=linear_method,
|
|
)
|
|
quant_config = getattr(linear_method, "quant_config", None)
|
|
self.act = get_act_fn(config.activation_function, quant_config,
|
|
intermediate_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.c_fc(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states, _ = self.c_proj(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPT2Block(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPT2Config,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
|
|
hidden_size)
|
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.attn = GPT2Attention(config, linear_method)
|
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.mlp = GPT2MLP(inner_dim, config, linear_method)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_output = self.attn(
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
# residual connection
|
|
hidden_states = attn_output + residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
# residual connection
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class GPT2Model(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPT2Config,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
assert not config.add_cross_attention
|
|
assert not config.scale_attn_by_inverse_layer_idx
|
|
assert not config.reorder_and_upcast_attn
|
|
self.embed_dim = config.hidden_size
|
|
self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
|
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
|
self.h = nn.ModuleList([
|
|
GPT2Block(config, linear_method)
|
|
for _ in range(config.num_hidden_layers)
|
|
])
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.wte(input_ids)
|
|
position_embeds = self.wpe(position_ids)
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
for i in range(len(self.h)):
|
|
layer = self.h[i]
|
|
hidden_states = layer(hidden_states, kv_caches[i], attn_metadata)
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPT2LMHeadModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPT2Config,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.linear_method = linear_method
|
|
self.transformer = GPT2Model(config, linear_method)
|
|
self.lm_head_weight = self.transformer.wte.weight
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = Sampler()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
attn_metadata)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head_weight, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self,
|
|
model_name_or_path: str,
|
|
cache_dir: Optional[str] = None,
|
|
load_format: str = "auto",
|
|
revision: Optional[str] = None):
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
for name, loaded_weight in hf_model_weights_iterator(
|
|
model_name_or_path, cache_dir, load_format, revision):
|
|
if "lm_head.weight" in name:
|
|
# GPT-2 ties the weights of the embedding layer and the final
|
|
# linear layer.
|
|
continue
|
|
if ".attn.bias" in name or ".attn.masked_bias" in name:
|
|
# Skip attention mask.
|
|
# NOTE: "c_attn.bias" should not be skipped.
|
|
continue
|
|
if not name.startswith("transformer."):
|
|
name = "transformer." + name
|
|
param = params_dict[name]
|
|
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
|
|
# Because of this, we need to transpose the weights.
|
|
# Note(zhuohan): the logic below might break quantized models.
|
|
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
|
|
if conv1d_weight_name not in name:
|
|
continue
|
|
if not name.endswith(".weight"):
|
|
continue
|
|
loaded_weight = loaded_weight.t()
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|