CSWYF3634076 644d57d531
[Model] Add Ernie4.5 VL Model Support (#22514)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
2025-08-26 21:02:55 -07:00

1029 lines
43 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import itertools
from typing import Optional, Union
import numpy as np
import torch
from transformers import PretrainedConfig
from vllm.platforms import current_platform
from vllm.triton_utils import tl, triton
from .base import RotaryEmbedding
from .common import apply_rotary_emb_dispatch
@triton.jit
def _triton_qwen2vl_mrope_forward(
q_ptr,
k_ptr,
cos,
sin,
num_tokens,
n_qh: tl.constexpr,
n_kh: tl.constexpr,
hd: tl.constexpr,
rd: tl.constexpr,
pad_n_qh: tl.constexpr,
pad_n_kh: tl.constexpr,
pad_hd: tl.constexpr,
mrope_section_t: tl.constexpr,
mrope_section_h: tl.constexpr,
):
# Adapted from
# https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/qwen2vl_mrope.py
# This version supports flatten input tensors from vllm
# and supports cos and sin cache with shape (3, num_tokens, head_dim // 2)
# instead of (3, bsz, seq_len, head_dim)
pid = tl.program_id(0)
# locate start address
q_ptr = q_ptr + pid * (n_qh * hd)
k_ptr = k_ptr + pid * (n_kh * hd)
# ####################################################################
# get the cos(mθ_{i...d/2}) and sin(mθ_{i...d/2}) for token position
# m of this program instance
# ####################################################################
# Note: cos and sin now have shape (3, num_tokens, head_dim // 2)
t_end = mrope_section_t
h_end = t_end + mrope_section_h
# Updated stride calculation for half head_dim
half_rd = rd // 2
t_cos = cos + pid * half_rd
h_cos = t_cos + num_tokens * half_rd
w_cos = h_cos + num_tokens * half_rd
t_sin = sin + pid * half_rd
h_sin = t_sin + num_tokens * half_rd
w_sin = h_sin + num_tokens * half_rd
# Updated offsets for half head_dim
cos_offsets = tl.arange(0, pad_hd // 2)
t_mask = cos_offsets < t_end
h_mask = (t_end <= cos_offsets) & (cos_offsets < h_end)
w_mask = (h_end <= cos_offsets) & (cos_offsets < half_rd)
t_cos_row = tl.load(t_cos + cos_offsets, mask=t_mask, other=0)
h_cos_row = tl.load(h_cos + cos_offsets, mask=h_mask, other=0)
w_cos_row = tl.load(w_cos + cos_offsets, mask=w_mask, other=0)
t_sin_row = tl.load(t_sin + cos_offsets, mask=t_mask, other=0)
h_sin_row = tl.load(h_sin + cos_offsets, mask=h_mask, other=0)
w_sin_row = tl.load(w_sin + cos_offsets, mask=w_mask, other=0)
cos_row = t_cos_row + h_cos_row + w_cos_row
sin_row = t_sin_row + h_sin_row + w_sin_row
# ####################################################################
# Load the left and right half of q and k for the current
# program instance (i.e. for the current token) separately
# ####################################################################
# left half of the head
first_half_q_offsets = tl.arange(0, pad_n_qh)[:, None] * hd + tl.arange(
0, pad_hd // 2)[None, :]
first_half_k_offsets = tl.arange(0, pad_n_kh)[:, None] * hd + tl.arange(
0, pad_hd // 2)[None, :]
first_q_mask = (tl.arange(0, pad_n_qh)[:, None] < n_qh) & (tl.arange(
0, pad_hd // 2)[None, :] < rd // 2)
first_k_mask = (tl.arange(0, pad_n_kh)[:, None] < n_kh) & (tl.arange(
0, pad_hd // 2)[None, :] < rd // 2)
q_tile_1 = tl.load(q_ptr + first_half_q_offsets,
mask=first_q_mask,
other=0).to(sin_row.dtype)
k_tile_1 = tl.load(k_ptr + first_half_k_offsets,
mask=first_k_mask,
other=0).to(sin_row.dtype)
# right half of the head
second_half_q_offsets = first_half_q_offsets + (rd // 2)
second_half_k_offsets = first_half_k_offsets + (rd // 2)
second_q_mask = first_q_mask
second_k_mask = first_k_mask
q_tile_2 = tl.load(q_ptr + second_half_q_offsets,
mask=second_q_mask,
other=0).to(sin_row.dtype)
k_tile_2 = tl.load(k_ptr + second_half_k_offsets,
mask=second_k_mask,
other=0).to(sin_row.dtype)
# y = [x1, x2] * [cos, cos] + [-x2, x1] * [sin, sin]
# Since cos and sin are now half-size,
# we use the same cos_row and sin_row for both halves
new_q_tile_1 = q_tile_1 * cos_row - q_tile_2 * sin_row
tl.store(q_ptr + first_half_q_offsets, new_q_tile_1, mask=first_q_mask)
new_q_tile_2 = q_tile_2 * cos_row + q_tile_1 * sin_row
tl.store(q_ptr + second_half_q_offsets, new_q_tile_2, mask=second_q_mask)
new_k_tile_1 = k_tile_1 * cos_row - k_tile_2 * sin_row
tl.store(k_ptr + first_half_k_offsets, new_k_tile_1, mask=first_k_mask)
new_k_tile_2 = k_tile_2 * cos_row + k_tile_1 * sin_row
tl.store(k_ptr + second_half_k_offsets, new_k_tile_2, mask=second_k_mask)
def triton_mrope(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
mrope_section: list[int],
head_size: int,
rotary_dim: int,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Qwen2VL mrope kernel.
Args:
query: [num_tokens, num_heads * head_size]
key: [num_tokens, num_kv_heads * head_size]
cos: [3, num_tokens, head_size //2 ]
(T/H/W positions with multimodal inputs)
sin: [3, num_tokens, head_size //2 ]
(T/H/W positions with multimodal inputs)
mrope_section: [t, h, w]
head_size: int
"""
n_row, n_q_head_head_dim = q.shape
n_q_head = n_q_head_head_dim // head_size
n_kv_head = k.shape[1] // head_size
pad_hd = triton.next_power_of_2(head_size)
pad_n_q_head = triton.next_power_of_2(n_q_head)
pad_n_kv_head = triton.next_power_of_2(n_kv_head)
# ensure tensors passed into the kernel are contiguous.
# It will be no-op if they are already contiguous
q = q.contiguous()
k = k.contiguous()
cos = cos.contiguous()
sin = sin.contiguous()
_triton_qwen2vl_mrope_forward[(n_row, )](
q,
k,
cos,
sin,
n_row,
n_q_head,
n_kv_head,
head_size,
rotary_dim,
pad_n_q_head,
pad_n_kv_head,
pad_hd,
mrope_section[0],
mrope_section[1],
)
return q, k
class MRotaryEmbedding(RotaryEmbedding):
"""Rotary Embedding with Multimodal Sections."""
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: float,
is_neox_style: bool,
dtype: torch.dtype,
mrope_section: Optional[list[int]] = None,
) -> None:
# In Qwen2.5-VL, the maximum index value is related to the duration of
# the input video. We enlarge max_position_embeddings to 4 times to get
# a larger the cos and sin cache.
self.cache_max_position_num = max_position_embeddings * 4
super().__init__(head_size, rotary_dim, self.cache_max_position_num,
base, is_neox_style, dtype)
self.mrope_section = mrope_section
if self.mrope_section:
assert sum(self.mrope_section) == rotary_dim // 2
self.use_triton = current_platform.is_cuda_alike()
def forward(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""MRope forward.
Args:
positions:
[num_tokens,] (text only) or
[3, num_tokens] (T/H/W positions with multimodal inputs)
query: [num_tokens, num_heads * head_size]
key: [num_tokens, num_kv_heads * head_size]
"""
if self.use_triton:
return self.forward_cuda(positions, query, key)
else:
return self.forward_native(positions, query, key)
def forward_native(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
offsets: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""PyTorch-native implementation equivalent to forward().
Args:
positions:
[num_tokens,] (text only) or
[3, num_tokens] (T/H/W positions with multimodal inputs)
query: [num_tokens, num_heads * head_size]
key: [num_tokens, num_kv_heads * head_size]
"""
assert positions.ndim == 1 or positions.ndim == 2
assert key is not None
num_tokens = positions.shape[-1]
cos_sin = self.cos_sin_cache[positions]
cos, sin = cos_sin.chunk(2, dim=-1)
if positions.ndim == 2:
assert self.mrope_section
cos = torch.cat([
m[i]
for i, m in enumerate(cos.split(self.mrope_section, dim=-1))
],
dim=-1)
sin = torch.cat([
m[i]
for i, m in enumerate(sin.split(self.mrope_section, dim=-1))
],
dim=-1)
query_shape = query.shape
query = query.view(num_tokens, -1, self.head_size)
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
query_rot = apply_rotary_emb_dispatch(query_rot, cos, sin,
self.is_neox_style)
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
key_shape = key.shape
key = key.view(num_tokens, -1, self.head_size)
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
key_rot = apply_rotary_emb_dispatch(key_rot, cos, sin,
self.is_neox_style)
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
def forward_cuda(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
offsets: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
assert positions.ndim == 1 or positions.ndim == 2
assert key is not None
num_tokens = positions.shape[-1]
cos_sin = self.cos_sin_cache[positions]
cos, sin = cos_sin.chunk(2, dim=-1)
query_shape = query.shape
key_shape = key.shape
if positions.ndim == 2:
assert self.mrope_section
q, k = triton_mrope(
query,
key,
cos,
sin,
self.mrope_section,
self.head_size,
self.rotary_dim,
)
return q.reshape(query_shape), k.reshape(key_shape)
query = query.view(num_tokens, -1, self.head_size)
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
query_rot = apply_rotary_emb_dispatch(query_rot, cos, sin,
self.is_neox_style)
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
key = key.view(num_tokens, -1, self.head_size)
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
key_rot = apply_rotary_emb_dispatch(key_rot, cos, sin,
self.is_neox_style)
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
@classmethod
def get_input_positions(
cls,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
video_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
second_per_grid_ts: Optional[list[float]],
context_len: int = 0,
seq_len: Optional[int] = None,
audio_feature_lengths: Optional[torch.Tensor] = None,
use_audio_in_video: bool = False,
) -> tuple[list[list[int]], int]:
"""Get mrope input positions and delta value."""
image_grid_thw = [] if image_grid_thw is None else image_grid_thw
video_grid_thw = [] if video_grid_thw is None else video_grid_thw
second_per_grid_ts = [] if second_per_grid_ts is None else \
second_per_grid_ts
llm_positions, mrope_position_delta = \
cls.get_input_positions_tensor(
input_tokens=input_tokens,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
context_len=context_len,
seq_len=seq_len,
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
return llm_positions.tolist(), mrope_position_delta
@classmethod
def get_input_positions_tensor(
cls,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Union[list[list[int]], torch.Tensor],
video_grid_thw: Union[list[list[int]], torch.Tensor],
second_per_grid_ts: list[float],
context_len: int = 0,
seq_len: Optional[int] = None,
audio_feature_lengths: Optional[torch.Tensor] = None,
use_audio_in_video: bool = False,
) -> tuple[torch.Tensor, int]:
from vllm.transformers_utils.config import thinker_uses_mrope
if thinker_uses_mrope(hf_config):
return cls._omni_get_input_positions_tensor(
input_tokens=input_tokens,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
context_len=context_len,
seq_len=seq_len,
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
elif hf_config.model_type in ["glm4v", "glm4v_moe"]:
return cls._glm4v_get_input_positions_tensor(
input_tokens=input_tokens,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
context_len=context_len,
seq_len=seq_len,
)
elif hf_config.model_type in ["ernie4_5_moe_vl", "ernie4_5_vl"]:
return cls._ernie_get_input_positions_tensor(
input_tokens=input_tokens,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
context_len=context_len,
seq_len=seq_len,
)
else:
return cls._vl_get_input_positions_tensor(
input_tokens=input_tokens,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
context_len=context_len,
seq_len=seq_len,
)
@classmethod
def _glm4v_get_input_positions_tensor(
cls,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Union[list[list[int]], torch.Tensor],
video_grid_thw: Union[list[list[int]], torch.Tensor],
context_len: int = 0,
seq_len: Optional[int] = None,
) -> tuple[torch.Tensor, int]:
"""Get mrope input positions and delta value for GLM4V."""
image_token_id = hf_config.image_token_id
video_start_token_id = hf_config.video_start_token_id
video_end_token_id = hf_config.video_end_token_id
spatial_merge_size = hf_config.vision_config.spatial_merge_size
llm_pos_ids_list: list = []
if not (image_grid_thw is None and video_grid_thw is None):
if isinstance(image_grid_thw, torch.Tensor):
image_grid_thw = image_grid_thw.tolist()
input_token_type: list[str] = []
video_check_flg = False
for token in input_tokens:
if token == video_start_token_id:
video_check_flg = True
elif token == video_end_token_id:
video_check_flg = False
if (token == image_token_id) and (video_check_flg is False):
input_token_type.append("image")
elif (token == image_token_id) and (video_check_flg is True):
input_token_type.append("video")
else:
input_token_type.append("text")
input_type_group: list[tuple[str, int, int]] = []
for key, group_iter in itertools.groupby(
enumerate(input_token_type), lambda x: x[1]):
group_list = list(group_iter)
start_index = group_list[0][0]
end_index = group_list[-1][0] + 1
input_type_group.append((key, start_index, end_index))
video_frame_num = 1
mm_data_idx = 0
for modality_type, start_idx, end_idx in input_type_group:
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
llm_pos_ids_list) > 0 else 0
if modality_type == "image":
t, h, w = (
image_grid_thw[mm_data_idx][0],
image_grid_thw[mm_data_idx][1],
image_grid_thw[mm_data_idx][2],
)
llm_grid_t, llm_grid_h, llm_grid_w = \
t, h // spatial_merge_size, w // spatial_merge_size
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + st_idx)
mm_data_idx += 1
elif modality_type == "video":
t, h, w = (
video_frame_num,
image_grid_thw[mm_data_idx][1],
image_grid_thw[mm_data_idx][2],
)
llm_grid_t, llm_grid_h, llm_grid_w = \
t, h // spatial_merge_size, w // spatial_merge_size
for t_idx in range(llm_grid_t):
t_index = torch.tensor(t_idx).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(
1, -1, 1).expand(1, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(
1, 1, -1).expand(1, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + st_idx)
mm_data_idx += 1
video_frame_num += 1
else:
text_len = end_idx - start_idx
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) +
st_idx)
video_frame_num = 1
else:
text_len = len(input_tokens)
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1))
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
llm_positions = llm_positions[:, context_len:seq_len]
mrope_position_delta = (llm_positions.max() + 1 -
len(input_tokens)).item()
return llm_positions, mrope_position_delta
@classmethod
def _ernie_get_input_positions_tensor(
cls,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Union[list[list[int]], torch.Tensor],
video_grid_thw: Union[list[list[int]], torch.Tensor],
context_len: int = 0,
seq_len: Optional[int] = None,
) -> tuple[torch.Tensor, int]:
"""Get mrope input positions and delta value for Ernie VL."""
image_token_id = hf_config.im_patch_id
video_start_token_id = hf_config.video_start_token_id
video_end_token_id = hf_config.video_end_token_id
spatial_conv_size = hf_config.spatial_conv_size
temporal_conv_size = hf_config.temporal_conv_size
llm_pos_ids_list: list = []
if not (image_grid_thw is None and video_grid_thw is None):
if isinstance(image_grid_thw, torch.Tensor):
image_grid_thw = image_grid_thw.tolist()
input_token_type: list[str] = []
video_check_flg = False
for token in input_tokens:
if token == video_start_token_id:
video_check_flg = True
elif token == video_end_token_id:
video_check_flg = False
if (token == image_token_id) and (video_check_flg is False):
input_token_type.append("image")
elif (token == image_token_id) and (video_check_flg is True):
input_token_type.append("video")
else:
input_token_type.append("text")
input_type_group: list[tuple[str, int, int]] = []
for key, group_iter in itertools.groupby(
enumerate(input_token_type), lambda x: x[1]):
group_list = list(group_iter)
start_index = group_list[0][0]
end_index = group_list[-1][0] + 1
input_type_group.append((key, start_index, end_index))
video_frame_num = 1
mm_data_idx = 0
for modality_type, start_idx, end_idx in input_type_group:
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
llm_pos_ids_list) > 0 else 0
if modality_type == "image":
t, h, w = (
image_grid_thw[mm_data_idx][0],
image_grid_thw[mm_data_idx][1],
image_grid_thw[mm_data_idx][2],
)
llm_grid_t, llm_grid_h, llm_grid_w = \
t, h // spatial_conv_size, w // spatial_conv_size
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + st_idx)
mm_data_idx += 1
elif modality_type == "video":
t, h, w = (
video_grid_thw[mm_data_idx][0],
video_grid_thw[mm_data_idx][1],
video_grid_thw[mm_data_idx][2],
)
llm_grid_t, llm_grid_h, llm_grid_w = (t //
temporal_conv_size,
h //
spatial_conv_size,
w //
spatial_conv_size)
for t_idx in range(llm_grid_t):
t_index = torch.tensor(t_idx).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(
1, -1, 1).expand(1, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(
1, 1, -1).expand(1, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + st_idx)
mm_data_idx += 1
video_frame_num += 1
else:
text_len = end_idx - start_idx
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) +
st_idx)
video_frame_num = 1
else:
text_len = len(input_tokens)
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1))
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
llm_positions = llm_positions[:, context_len:seq_len]
mrope_position_delta = (llm_positions.max() + 1 -
len(input_tokens)).item()
return llm_positions, mrope_position_delta
@classmethod
def _vl_get_input_positions_tensor(
cls,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Union[list[list[int]], torch.Tensor],
video_grid_thw: Union[list[list[int]], torch.Tensor],
second_per_grid_ts: list[float],
context_len: int = 0,
seq_len: Optional[int] = None,
) -> tuple[torch.Tensor, int]:
"""Get mrope input positions and delta value."""
image_token_id = hf_config.image_token_id
video_token_id = hf_config.video_token_id
vision_start_token_id = hf_config.vision_start_token_id
spatial_merge_size = hf_config.vision_config.spatial_merge_size
tokens_per_second = getattr(hf_config.vision_config,
"tokens_per_second", 1.0)
input_tokens_tensor = torch.tensor(input_tokens)
vision_start_indices = torch.argwhere(
input_tokens_tensor == vision_start_token_id).squeeze(1)
vision_tokens = input_tokens_tensor[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
image_index, video_index = 0, 0
for _ in range(image_nums + video_nums):
video_second_per_grid_t = 0.0
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
video_second_per_grid_t = 1.0
if second_per_grid_ts:
video_second_per_grid_t = second_per_grid_ts[video_index]
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = \
t, h // spatial_merge_size, w // spatial_merge_size
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
t_index = (torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w) * video_second_per_grid_t *
tokens_per_second).long().flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
mrope_position_delta = (llm_positions.max() + 1 -
len(input_tokens)).item()
llm_positions = llm_positions[:, context_len:seq_len]
return llm_positions, mrope_position_delta
@classmethod
def _omni_get_input_positions_tensor(
cls,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Union[list[list[int]], torch.Tensor],
video_grid_thw: Union[list[list[int]], torch.Tensor],
second_per_grid_ts: Optional[list[float]] = None,
context_len: int = 0,
seq_len: Optional[int] = None,
audio_feature_lengths: Optional[torch.Tensor] = None,
use_audio_in_video: bool = False,
) -> tuple[torch.Tensor, int]:
"""Get mrope input positions and delta value (Qwen2.5-Omni version).
Differences from MRotaryEmbedding:
1. Add audio support (and related `audio_feature_lengths`).
2. Add `use_audio_in_video` option to read audio from video inputs.
In this case, audio and vision position ids will be split into
chunks and interleaved.
Example:
(V_i are vision position ids, A_i are audio position ids)
|V_1 ... V_n|A_1 ... A_n|V_n+1 ... V_2n|A_n+1 ... A_2n|...
|vision chunk 1|audio chunk 1|vision chunk 2|audio chunk 2 |...
"""
# TODO(fyabc): refactor and share more code with
# _vl_get_input_positions_tensor.
thinker_config = hf_config.thinker_config
audio_token_id = thinker_config.audio_token_index
image_token_id = thinker_config.image_token_index
video_token_id = thinker_config.video_token_index
audio_start_token_id = thinker_config.audio_start_token_id
audio_end_token_id = thinker_config.audio_end_token_id
vision_start_token_id = thinker_config.vision_start_token_id
vision_end_token_id = thinker_config.vision_end_token_id
seconds_per_chunk = thinker_config.seconds_per_chunk
spatial_merge_size = thinker_config.vision_config.spatial_merge_size
tokens_per_second = getattr(thinker_config.vision_config,
"tokens_per_second", 25)
if isinstance(image_grid_thw, list):
image_grid_thw = torch.tensor(image_grid_thw)
if isinstance(video_grid_thw, list):
video_grid_thw = torch.tensor(video_grid_thw)
src_item = input_tokens
audio_seqlens = audio_feature_lengths
if not second_per_grid_ts:
second_per_grid_ts = [1] * video_grid_thw.shape[0]
audio_idx = 0
video_idx = 0
image_idx = 0
new_src_item: list[int] = []
llm_pos_ids_list: list[torch.Tensor] = []
idx = 0
while idx < len(src_item):
new_src_item_len = len(new_src_item)
start_idx = llm_pos_ids_list[-1].max() + 1 if len(
llm_pos_ids_list) > 0 else 0
if src_item[idx] not in [
audio_token_id, video_token_id, image_token_id
]:
if use_audio_in_video and idx > 0:
if src_item[idx] == vision_end_token_id and \
src_item[idx - 1] == audio_end_token_id:
# processing the <|audio_eos|> before <|vision_eos|>
start_idx -= 1
elif src_item[idx] == audio_start_token_id and \
src_item[idx - 1] == vision_start_token_id:
# processing the <|audio_bos|> after <|vision_eos|>
start_idx -= 1
new_src_item.append(src_item[idx])
llm_pos_ids = torch.tensor([start_idx],
dtype=torch.long).expand(3, -1)
llm_pos_ids_list.append(llm_pos_ids)
elif src_item[idx] == audio_token_id:
assert audio_seqlens is not None
audio_seqlen = audio_seqlens[audio_idx]
place_num = (((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1)
new_src_item.extend([audio_token_id] * place_num)
llm_pos_ids = torch.arange(place_num).expand(3, -1) + start_idx
llm_pos_ids_list.append(llm_pos_ids)
audio_idx += 1
elif src_item[idx] == image_token_id:
grid_t = image_grid_thw[image_idx][0]
grid_hs = image_grid_thw[:, 1]
grid_ws = image_grid_thw[:, 2]
t_index = (torch.arange(grid_t) * 1 * tokens_per_second).long()
llm_pos_ids = cls._get_llm_pos_ids_for_vision(
start_idx, image_idx, spatial_merge_size, t_index, grid_hs,
grid_ws)
llm_pos_ids_list.append(llm_pos_ids)
vision_seqlen = image_grid_thw[image_idx].prod() // (
spatial_merge_size**2)
new_src_item.extend([image_token_id] * vision_seqlen)
image_idx += 1
elif src_item[idx] == video_token_id and not use_audio_in_video:
grid_t = video_grid_thw[video_idx][0]
grid_hs = video_grid_thw[:, 1]
grid_ws = video_grid_thw[:, 2]
t_index = (torch.arange(grid_t) *
second_per_grid_ts[video_idx] *
tokens_per_second).long()
llm_pos_ids = cls._get_llm_pos_ids_for_vision(
start_idx, video_idx, spatial_merge_size, t_index, grid_hs,
grid_ws)
llm_pos_ids_list.append(llm_pos_ids)
vision_seqlen = video_grid_thw[video_idx].prod() // (
spatial_merge_size**2)
new_src_item.extend([video_token_id] * vision_seqlen)
video_idx += 1
else:
# read audio from video
assert audio_seqlens is not None
audio_seqlen = audio_seqlens[audio_idx]
vision_seqlen = video_grid_thw[video_idx].prod() // (
spatial_merge_size**2)
grid_t = video_grid_thw[video_idx][0]
grid_h = video_grid_thw[video_idx][1]
grid_w = video_grid_thw[video_idx][2]
grid_hs = video_grid_thw[:, 1]
grid_ws = video_grid_thw[:, 2]
t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
t_index = (torch.arange(grid_t) *
second_per_grid_ts[video_idx] *
tokens_per_second).long()
t_index_split_chunk = cls._split_list_into_ranges(
t_index, t_ntoken_per_chunk)
place_num = (((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1) + 2
pure_audio_len = place_num - 2
added_audio_len = 0
audio_llm_pos_ids_list: list[torch.Tensor] = []
for t_chunk in t_index_split_chunk:
vision_ntoken_per_chunk = len(
t_chunk) * grid_h * grid_w // (spatial_merge_size**2)
new_src_item.extend([video_token_id] *
vision_ntoken_per_chunk)
vision_llm_pos_ids_list = cls._get_llm_pos_ids_for_vision(
start_idx, video_idx, spatial_merge_size, t_chunk,
grid_hs, grid_ws).split(1, dim=1)
llm_pos_ids_list.extend(vision_llm_pos_ids_list)
new_src_item.extend(
min(t_ntoken_per_chunk, pure_audio_len -
added_audio_len) * [audio_token_id])
audio_start_idx = start_idx if len(
audio_llm_pos_ids_list
) == 0 else audio_llm_pos_ids_list[-1][0].item() + 1
if min(t_ntoken_per_chunk,
pure_audio_len - added_audio_len) > 0:
audio_llm_pos_ids_list = (torch.arange(
min(t_ntoken_per_chunk, pure_audio_len -
added_audio_len)).expand(3, -1) +
audio_start_idx).split(1,
dim=1)
else:
audio_llm_pos_ids_list = []
added_audio_len += min(t_ntoken_per_chunk,
pure_audio_len - added_audio_len)
llm_pos_ids_list.extend(audio_llm_pos_ids_list)
if added_audio_len < pure_audio_len:
new_src_item.extend(
(pure_audio_len - added_audio_len) * [audio_token_id])
audio_llm_pos_ids_list = (
torch.arange(pure_audio_len - added_audio_len).expand(
3, -1) + llm_pos_ids_list[-1].max() + 1).split(
1, dim=1)
llm_pos_ids_list.extend(audio_llm_pos_ids_list)
audio_idx += 1
video_idx += 1
# move to the next token
idx += len(new_src_item) - new_src_item_len
llm_positions = torch.cat(llm_pos_ids_list, dim=1)
mrope_position_delta = torch.cat(llm_pos_ids_list,
dim=1).max() + 1 - len(src_item)
llm_positions = llm_positions[:, context_len:seq_len]
return llm_positions, mrope_position_delta
@staticmethod
def _get_llm_pos_ids_for_vision(
start_idx: int,
vision_idx: int,
spatial_merge_size: int,
t_index: list[int],
grid_hs: torch.Tensor,
grid_ws: torch.Tensor,
) -> torch.Tensor:
llm_pos_ids_list = []
llm_grid_h = grid_hs[vision_idx] // spatial_merge_size
llm_grid_w = grid_ws[vision_idx] // spatial_merge_size
h_index = (torch.arange(llm_grid_h).view(1, -1, 1).expand(
len(t_index), -1, llm_grid_w).flatten())
w_index = (torch.arange(llm_grid_w).view(1, 1, -1).expand(
len(t_index), llm_grid_h, -1).flatten())
t_index_tensor = torch.Tensor(t_index).to(llm_grid_h.device).view(
-1, 1).expand(-1, llm_grid_h * llm_grid_w).long().flatten()
_llm_pos_ids = torch.stack([t_index_tensor, h_index, w_index])
llm_pos_ids_list.append(_llm_pos_ids + start_idx)
llm_pos_ids = torch.cat(llm_pos_ids_list, dim=1)
return llm_pos_ids
@staticmethod
def _split_list_into_ranges(lst: torch.Tensor,
interval: int) -> list[list[int]]:
ranges: list[list[int]] = [[]
for _ in range((max(lst) // interval) + 1)]
for num in lst:
index = num // interval
ranges[index].append(num)
return ranges
@staticmethod
def get_next_input_positions(
mrope_position_delta: int,
context_len: int,
seq_len: int,
) -> list[list[int]]:
return [
list(
range(context_len + mrope_position_delta,
seq_len + mrope_position_delta)) for _ in range(3)
]
@staticmethod
def get_next_input_positions_tensor(out: np.ndarray, out_offset: int,
mrope_position_delta: int,
context_len: int, num_new_tokens: int):
values = np.arange(mrope_position_delta + context_len,
mrope_position_delta + context_len + num_new_tokens,
dtype=out.dtype)
out[:, out_offset:out_offset + num_new_tokens] = values
@classmethod
def omni_get_updates_use_audio_in_video(
cls,
thinker_config: PretrainedConfig,
audio_len: int,
video_grid_thw: Union[list[int], torch.Tensor],
video_second_per_grid_t: float,
) -> list[int]:
"""Get video prompt updates when `use_audio_in_video` is True.
In this case, audio and vision update ids will be split into
chunks and interleaved (details in `_omni_get_input_positions_tensor`).
<|video_bos|><|VIDEO|><|video_eos|> =>
<|video_bos|><|audio_bos|>(... chunks ...)<|audio_eos|><|video_eos|>
"""
audio_token_id = thinker_config.audio_token_index
video_token_id = thinker_config.video_token_index
audio_start_token_id = thinker_config.audio_start_token_id
audio_end_token_id = thinker_config.audio_end_token_id
seconds_per_chunk = thinker_config.seconds_per_chunk
spatial_merge_size = thinker_config.vision_config.spatial_merge_size
tokens_per_second = getattr(thinker_config.vision_config,
"tokens_per_second", 25)
grid_t = video_grid_thw[0]
grid_h = video_grid_thw[1]
grid_w = video_grid_thw[2]
t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
t_index = (torch.arange(grid_t) * video_second_per_grid_t *
tokens_per_second).long()
t_index_split_chunk = cls._split_list_into_ranges(
t_index, t_ntoken_per_chunk)
updates = [audio_start_token_id]
added_audio_len = 0
for t_chunk in t_index_split_chunk:
vision_ntoken_per_chunk = len(t_chunk) * grid_h * grid_w // (
spatial_merge_size**2)
updates.extend([video_token_id] * vision_ntoken_per_chunk)
audio_chunk_size = min(t_ntoken_per_chunk,
audio_len - added_audio_len)
updates.extend(audio_chunk_size * [audio_token_id])
added_audio_len += audio_chunk_size
if added_audio_len < audio_len:
updates.extend((audio_len - added_audio_len) * [audio_token_id])
updates.extend([audio_end_token_id])
return updates