mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 06:55:01 +08:00
Signed-off-by: wuao.scotty <wuao.scotty@bytedance.com> Co-authored-by: wuao.scotty <wuao.scotty@bytedance.com>
361 lines
14 KiB
Python
361 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2025 The ZhipuAI Team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only GLM-4.5 MTP model compatible with HuggingFace weights."""
|
|
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.config import CacheConfig, ParallelConfig, VllmConfig
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .glm4_moe import (
|
|
Glm4MixtureOfExperts,
|
|
Glm4MoE,
|
|
Glm4MoeDecoderLayer,
|
|
get_spec_layer_idx_from_weight_name,
|
|
)
|
|
from .interfaces import SupportsPP
|
|
from .utils import maybe_prefix
|
|
|
|
|
|
class SharedHead(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
quant_config: QuantizationConfig | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "head"),
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
return self.norm(hidden_states)
|
|
|
|
|
|
class Glm4MoeMultiTokenPredictorLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
parallel_config: ParallelConfig | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
|
|
self.shared_head = SharedHead(
|
|
config=config, prefix=prefix, quant_config=quant_config
|
|
)
|
|
self.enable_eplb = parallel_config.enable_eplb
|
|
self.mtp_block = Glm4MoeDecoderLayer(
|
|
config=config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
enable_eplb=self.enable_eplb,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
spec_step_index: int = 0,
|
|
) -> torch.Tensor:
|
|
assert inputs_embeds is not None
|
|
# masking inputs at position 0, as not needed by MTP
|
|
inputs_embeds[positions == 0] = 0
|
|
inputs_embeds = self.enorm(inputs_embeds)
|
|
previous_hidden_states = self.hnorm(previous_hidden_states)
|
|
|
|
hidden_states = self.eh_proj(
|
|
torch.cat([inputs_embeds, previous_hidden_states], dim=-1)
|
|
)
|
|
|
|
hidden_states, residual = self.mtp_block(
|
|
positions=positions, hidden_states=hidden_states, residual=None
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class Glm4MoeMultiTokenPredictor(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
self.mtp_start_layer_idx = config.num_hidden_layers
|
|
self.num_mtp_layers = config.num_nextn_predict_layers
|
|
# to map the exact layer index from weights
|
|
self.layers = torch.nn.ModuleDict(
|
|
{
|
|
str(idx): Glm4MoeMultiTokenPredictorLayer(
|
|
config,
|
|
f"{prefix}.layers.{idx}",
|
|
cache_config=vllm_config.cache_config,
|
|
quant_config=vllm_config.quant_config,
|
|
parallel_config=vllm_config.parallel_config,
|
|
)
|
|
for idx in range(
|
|
self.mtp_start_layer_idx,
|
|
self.mtp_start_layer_idx + self.num_mtp_layers,
|
|
)
|
|
}
|
|
)
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
previous_hidden_states: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
current_step_idx = spec_step_idx % self.num_mtp_layers
|
|
return self.layers[str(self.mtp_start_layer_idx + current_step_idx)](
|
|
input_ids,
|
|
positions,
|
|
previous_hidden_states,
|
|
inputs_embeds,
|
|
current_step_idx,
|
|
)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
current_step_idx = spec_step_idx % self.num_mtp_layers
|
|
mtp_layer = self.layers[str(self.mtp_start_layer_idx + current_step_idx)]
|
|
logits = self.logits_processor(
|
|
mtp_layer.shared_head.head, mtp_layer.shared_head(hidden_states)
|
|
)
|
|
return logits
|
|
|
|
|
|
class Glm4MoeMTP(nn.Module, SupportsPP, Glm4MixtureOfExperts):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
self.config = vllm_config.model_config.hf_config
|
|
self.model = Glm4MoeMultiTokenPredictor(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
|
|
self.expert_weights = []
|
|
|
|
# Set MoE hyperparameters
|
|
self.num_moe_layers = self.config.num_nextn_predict_layers
|
|
self.num_expert_groups = self.config.n_group
|
|
|
|
self.moe_layers: list[FusedMoE] = []
|
|
self.moe_mlp_layers: list[Glm4MoE] = []
|
|
example_moe = None
|
|
for layer in self.model.layers.values():
|
|
assert isinstance(layer, Glm4MoeMultiTokenPredictorLayer)
|
|
layer = layer.mtp_block
|
|
assert isinstance(layer, Glm4MoeDecoderLayer)
|
|
if isinstance(layer.mlp, Glm4MoE):
|
|
example_moe = layer.mlp
|
|
self.moe_mlp_layers.append(layer.mlp)
|
|
self.moe_layers.append(layer.mlp.experts)
|
|
self.extract_moe_parameters(example_moe)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(
|
|
input_ids, positions, hidden_states, inputs_embeds, spec_step_idx
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor | None:
|
|
return self.model.compute_logits(hidden_states, spec_step_idx)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.n_routed_experts,
|
|
)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
spec_layer = self.model.mtp_start_layer_idx
|
|
for name, loaded_weight in weights:
|
|
if name == "lm_head.weight":
|
|
name = f"model.layers.{spec_layer}.shard_head.head.weight"
|
|
elif name == "model.embed_tokens.weight":
|
|
# This name is same with local model, rewriting is not needed.
|
|
pass
|
|
else:
|
|
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
|
|
if spec_layer is None:
|
|
continue
|
|
name = self._rewrite_spec_layer_name(spec_layer, name)
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if ("mlp.experts." in name) and name not in params_dict:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
# According to DeepSeek-V3 Technical Report, MTP modules
|
|
# shares embedding layer. We only load the first weights.
|
|
if (
|
|
spec_layer != self.model.mtp_start_layer_idx
|
|
and ".layers" not in name
|
|
):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
def _rewrite_spec_layer_name(self, spec_layer: int, name: str) -> str:
|
|
"""
|
|
Rewrite the weight name to match the format of the original model.
|
|
Add .mtp_block for modules in transformer layer block for spec layer
|
|
and rename shared layer weights to be top level.
|
|
"""
|
|
spec_layer_weight_names = [
|
|
"embed_tokens",
|
|
"enorm",
|
|
"hnorm",
|
|
"eh_proj",
|
|
"shared_head",
|
|
]
|
|
shared_weight_names = ["embed_tokens"]
|
|
spec_layer_weight = False
|
|
shared_weight = False
|
|
for weight_name in spec_layer_weight_names:
|
|
if weight_name in name:
|
|
spec_layer_weight = True
|
|
if weight_name in shared_weight_names:
|
|
shared_weight = True
|
|
break
|
|
if not spec_layer_weight:
|
|
# treat rest weights as weights for transformer layer block
|
|
name = name.replace(
|
|
f"model.layers.{spec_layer}.", f"model.layers.{spec_layer}.mtp_block."
|
|
)
|
|
elif shared_weight:
|
|
# treat shared weights as top level weights
|
|
name = name.replace(f"model.layers.{spec_layer}.", "model.")
|
|
return name
|