vllm/vllm/attention/backends/abstract.py

123 lines
3.5 KiB
Python

from abc import ABC, abstractmethod
from dataclasses import dataclass, fields
from typing import Any, Dict, Generic, List, Optional, Tuple, Type, TypeVar
import torch
class AttentionBackend(ABC):
"""Abstract class for attention backends."""
@staticmethod
@abstractmethod
def get_impl_cls() -> Type["AttentionImpl"]:
raise NotImplementedError
@staticmethod
@abstractmethod
def make_metadata(*args, **kwargs) -> "AttentionMetadata":
raise NotImplementedError
@staticmethod
@abstractmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
raise NotImplementedError
@staticmethod
@abstractmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: Dict[int, int],
) -> None:
raise NotImplementedError
@staticmethod
@abstractmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: Dict[int, List[int]],
) -> None:
raise NotImplementedError
@dataclass
class AttentionMetadataPerStage:
"""Attention metadata for a specific stage. I.e., prefill or decode."""
def asdict_zerocopy(self) -> Dict[str, Any]:
"""Similar to dataclasses.asdict, but avoids deepcopying."""
# Note that if we add dataclasses as fields, they will need
# similar handling.
return {
field.name: getattr(self, field.name)
for field in fields(self)
}
T = TypeVar("T", bound=AttentionMetadataPerStage)
@dataclass
class AttentionMetadata(Generic[T]):
"""Attention metadata for prefill and decode batched together."""
# Total number of prefill requests.
num_prefills: int
# Number of prefill tokens.
num_prefill_tokens: int
# Number of decode tokens. Note that it is equivalent to the number of
# decode requests.
num_decode_tokens: int
# The attention metadata for prefill requests in a batch.
# None if there's no prefill requests in a batch.
prefill_metadata: Optional[T]
# The attention metadata for decode requests in a batch.
# None if there's no decode requests in a batch.
decode_metadata: Optional[T]
# (num_tokens,). The indices of the token slots that input tokens will be
# stored into. E.g., if `slot_mapping` is [35, 2, 17] and the block size
# is 16, the three tokens are stored in the 3rd slot in block 2, 2nd slot
# in block 0, and 1st slot in block 1, respectively.
slot_mapping: torch.Tensor
# The kv cache's data type.
kv_cache_dtype: str
def __post_init__(self):
if self.num_prefill_tokens > 0:
assert self.num_prefills > 0
assert self.prefill_metadata is not None
if self.num_decode_tokens > 0:
assert self.decode_metadata is not None
class AttentionImpl(ABC):
@abstractmethod
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: Optional[int] = None,
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
) -> None:
raise NotImplementedError
@abstractmethod
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata[AttentionMetadataPerStage],
kv_scale: float,
) -> torch.Tensor:
raise NotImplementedError